當前位置: 首頁>>代碼示例>>Python>>正文


Python Mixture.params方法代碼示例

本文整理匯總了Python中bayespy.nodes.Mixture.params方法的典型用法代碼示例。如果您正苦於以下問題:Python Mixture.params方法的具體用法?Python Mixture.params怎麽用?Python Mixture.params使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在bayespy.nodes.Mixture的用法示例。


在下文中一共展示了Mixture.params方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: generateCPD

# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import params [as 別名]
    def generateCPD(self, term): #, X_train, y_train, X_test, y_test, X_validation, y_validation, g_train, g_test, g_validation):
        
        clf = loadClf(self.ontology[term]['name'], self.fold, self.clfName)
        posTrain = sum(clf.y_train == POSTIVE_LABEL)
        negTrain = sum(clf.y_train == NEGATIVE_LABEL)
        totalTrain = posTrain + negTrain

        children = sorted(self.ontology[term]['children'])
        parents = sorted(self.ontology[term]['parents'])


        labels = {l : PRIOR for l in product(*((POSTIVE_LABEL,NEGATIVE_LABEL),)*(len(children)+1))}
        if children:
            childNodes = [self.ontology[child]['node'][self.fold][self.clfName] for child in children]
            for gene,y in zip(clf.g_train, clf.y_train):
                event = []
                for child in children:
                    event.append(POSTIVE_LABEL if gene in self.ontology.associations[child] else NEGATIVE_LABEL)
                event.append(POSTIVE_LABEL if gene in self.ontology.associations[term] else NEGATIVE_LABEL)
                assert (gene in self.ontology.associations[term]) == (y == POSTIVE_LABEL)
                event = tuple(event)

                labels[event] += 1
            def countBoth(event):
                return labels[event[:-1]+(POSTIVE_LABEL,)] + labels[event[:-1]+(NEGATIVE_LABEL,)]
            cprior = PRIOR * (2 ** len(children))
            
            types = [Mixture]*(len(children)-1) + [Categorical]
            mixparams = [i for s in zip(childNodes, types) for i in s]
            cpd = numpy.empty((2,)*(len(children)+1))
            for event, counted in labels.items():
                v=cpd
                for b in event[:-1]:
                    v = v[b]
                    
                hid = event[-1]
                print("Event: ", event)
                if POSTIVE_LABEL not in event[:-1]: # Všichni potomci označeni "ne"
                    v[hid] = counted/countBoth(event)
                    print("Stored %d / %d" % (counted,countBoth(event)))
                else:
                    v[hid] = {POSTIVE_LABEL: 0.99, NEGATIVE_LABEL:0.01}[hid]
                    print("Stored %d : %d" % (hid, v[hid]))


            #print(term,"<-",",".join(children))
            print(cpd)
            #print(labels)

            hidden = Mixture(*mixparams, cpd)
            hidden.params = cpd
            

        else: #No children
            #hidden = DiscreteDistribution({'0': posTrain / totalTrain, '1': negTrain / totalTrain})
            params = (posTrain / totalTrain, negTrain / totalTrain)
            hidden = Categorical(params)
            hidden.params = params

        #print("Hidden node %s:" % term)
        #print(repr(hidden))
        #print([p for p in hidden.parents if isinstance(p, Stochastic)])
        #print(hidden.get_moments())

        conf = clf.conf + PRIOR
        #posTest, negTest = numpy.sum(conf, 1) 
        posTest, negTest = numpy.sum(conf, 0) 
        #print("Confusion matrix:")
        #print(conf)
       
        try:
            assert term != self.ontology.root
            pos_decisions = clf.decision_function(clf.X_test[clf.y_test==POSTIVE_LABEL])
            neg_decisions = clf.decision_function(clf.X_test[clf.y_test==NEGATIVE_LABEL])
            means = [numpy.mean(pos_decisions)], [numpy.mean(neg_decisions)]
            maxprec = 100.0
            precs = [[numpy.min((1/numpy.var(pos_decisions), maxprec))]], [[numpy.min((1/numpy.var(neg_decisions), maxprec))]]
        #else:
        except (ValueError, AssertionError):
            means = [-1.], [1.]
            precs = [[1.]], [[1.]]
        print("Gaussian params:", term, self.ontology[term]['name'], means, precs)
        observed = Mixture(hidden, Gaussian, means, precs)
        #observed = ConditionalProbabilityTable([
        #        ['0', '0', conf[0][0] / posTest], # if term != root else 1.],
        #        ['0', '1', conf[0][1] / posTest], # if term != root else 0.],
        #        ['1', '0', conf[1][0] / negTest], # if term != root else 0.],
        #        ['1', '1', conf[1][1] / negTest]], #if term != root else 1.]],
        #    [hidden.distribution])
        #print("Observed node %s - %s:" % (term, self.ontology[term]['name']))
        #print(repr(observed))
        #print([p for p in observed.parents if isinstance(p, Stochastic)])

        self.ontology[term]['node'][self.fold][self.clfName] = hidden
        #self.ontology[term]['clf'][self.fold][self.clfName] = clf, X_validation, y_validation, g_validation
        assert self.lenValidation is None or self.lenValidation == len(clf.y_validation)
        self.lenValidation = len(clf.y_validation)
        self.allobserved[term] = observed
        self.allhidden[term] = hidden
        self.extranodes.update((p for p in hidden.parents if isinstance(p, Stochastic)))
開發者ID:jachymb,項目名稱:DiplomovaPrace,代碼行數:102,代碼來源:bayesnet.py


注:本文中的bayespy.nodes.Mixture.params方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。