當前位置: 首頁>>代碼示例>>Python>>正文


Python Mixture._message_to_child方法代碼示例

本文整理匯總了Python中bayespy.nodes.Mixture._message_to_child方法的典型用法代碼示例。如果您正苦於以下問題:Python Mixture._message_to_child方法的具體用法?Python Mixture._message_to_child怎麽用?Python Mixture._message_to_child使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在bayespy.nodes.Mixture的用法示例。


在下文中一共展示了Mixture._message_to_child方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_constant

# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import _message_to_child [as 別名]
    def test_constant(self):
        """
        Test constant categorical nodes
        """

        # Basic test
        Y = Mixture(2, Gamma, [1, 2, 3], [1, 1, 1])
        u = Y._message_to_child()
        self.assertAllClose(u[0],
                            3/1)

        # Test with one plate axis
        alpha = [[1, 2, 3],
                 [4, 5, 6]]
        Y = Mixture([2, 1], Gamma, alpha, 1)
        u = Y._message_to_child()
        self.assertAllClose(u[0],
                            [3, 5])

        # Test with two plate axes
        alpha = [ [[1, 2, 3],
                   [4, 5, 6]],
                  [[7, 8, 9],
                   [10, 11, 12]] ]
        Y = Mixture([[2, 1], [0, 2]], Gamma, alpha, 1)
        u = Y._message_to_child()
        self.assertAllClose(u[0],
                            [[3, 5],
                             [7, 12]])

        pass
開發者ID:kyloon,項目名稱:bayespy,代碼行數:33,代碼來源:test_categorical.py

示例2: test_nans

# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import _message_to_child [as 別名]
    def test_nans(self):
        """
        Test multinomial mixture
        """

        # The probabilities p1 cause problems
        p0 = [0.1, 0.9]
        p1 = [1.0-1e-50, 1e-50]
        Z = Categorical([1-1e-10, 1e-10])
        X = Mixture(Z, Multinomial, 10, [p0, p1])
        u = X._message_to_child()
        self.assertAllClose(u[0],
                            [1, 9])

        p0 = [0.1, 0.9]
        p1 = [1.0-1e-10, 1e-10]
        Z = Categorical([1-1e-50, 1e-50])
        X = Mixture(Z, Multinomial, 10, [p0, p1])
        u = X._message_to_child()
        self.assertAllClose(u[0],
                            [1, 9])
        
        with warnings.catch_warnings():
            warnings.simplefilter("ignore", RuntimeWarning)
            warnings.simplefilter("ignore", UserWarning)
            p0 = [0.1, 0.9]
            p1 = [1.0, 0.0]
            X = Mixture(0, Multinomial, 10, [p0, p1])
            u = X._message_to_child()
            self.assertAllClose(u[0],
                                np.nan*np.ones(2))

        
        pass
開發者ID:chagge,項目名稱:bayespy,代碼行數:36,代碼來源:test_mixture.py

示例3: test_message_to_child

# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import _message_to_child [as 別名]
    def test_message_to_child(self):
        """
        Test the message to child of Mixture node.
        """

        K = 3

        #
        # Estimate moments from parents only
        #

        # Simple case
        mu = GaussianARD([0,2,4], 1,
                         ndim=0,
                         plates=(K,))
        alpha = Gamma(1, 1,
                      plates=(K,))
        z = Categorical(np.ones(K)/K)
        X = Mixture(z, GaussianARD, mu, alpha)
        self.assertEqual(X.plates, ())
        self.assertEqual(X.dims, ( (), () ))
        u = X._message_to_child()
        self.assertAllClose(u[0],
                            2)
        self.assertAllClose(u[1],
                            2**2+1)

        # Broadcasting the moments on the cluster axis
        mu = GaussianARD(2, 1,
                         ndim=0,
                         plates=(K,))
        alpha = Gamma(1, 1,
                      plates=(K,))
        z = Categorical(np.ones(K)/K)
        X = Mixture(z, GaussianARD, mu, alpha)
        self.assertEqual(X.plates, ())
        self.assertEqual(X.dims, ( (), () ))
        u = X._message_to_child()
        self.assertAllClose(u[0],
                            2)
        self.assertAllClose(u[1],
                            2**2+1)

        #
        # Estimate moments with observed children
        #
        
        pass
開發者ID:chagge,項目名稱:bayespy,代碼行數:50,代碼來源:test_mixture.py

示例4: test_mixture

# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import _message_to_child [as 別名]
 def test_mixture(self):
     """
     Test mixture of Bernoulli
     """
     P = Mixture([2,0,0], Bernoulli, [0.1, 0.2, 0.3])
     u = P._message_to_child()
     self.assertEqual(len(u), 1)
     self.assertAllClose(u[0], [0.3, 0.1, 0.1])
     pass
開發者ID:BayesianHuman,項目名稱:bayespy,代碼行數:11,代碼來源:test_bernoulli.py

示例5: test_mixture

# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import _message_to_child [as 別名]
    def test_mixture(self):
        """
        Test binomial mixture
        """

        X = Mixture(2, Binomial, 10, [0.1, 0.2, 0.3, 0.4])
        u = X._message_to_child()
        self.assertAllClose(u[0], 3.0)

        pass
開發者ID:zehsilva,項目名稱:bayespy,代碼行數:12,代碼來源:test_binomial.py

示例6: test_mixture

# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import _message_to_child [as 別名]
    def test_mixture(self):
        """
        Test multinomial mixture
        """

        p0 = [0.1, 0.5, 0.2, 0.2]
        p1 = [0.5, 0.1, 0.1, 0.3]
        p2 = [0.3, 0.2, 0.1, 0.4]
        X = Mixture(2, Multinomial, 10, [p0, p1, p2])
        u = X._message_to_child()
        self.assertAllClose(u[0],
                            10*np.array(p2))

        pass
開發者ID:buptpriswang,項目名稱:bayespy,代碼行數:16,代碼來源:test_multinomial.py

示例7: test_message_to_parent

# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import _message_to_child [as 別名]
    def test_message_to_parent(self):
        """
        Test the message to parents of Mixture node.
        """

        K = 3

        # Broadcasting the moments on the cluster axis
        Mu = GaussianARD(2, 1,
                         ndim=0,
                         plates=(K,))
        (mu, mumu) = Mu._message_to_child()
        Alpha = Gamma(3, 1,
                      plates=(K,))
        (alpha, logalpha) = Alpha._message_to_child()
        z = Categorical(np.ones(K)/K)
        X = Mixture(z, GaussianARD, Mu, Alpha)
        tau = 4
        Y = GaussianARD(X, tau)
        y = 5
        Y.observe(y)
        (x, xx) = X._message_to_child()
        m = z._message_from_children()
        self.assertAllClose(m[0] * np.ones(K),
                            random.gaussian_logpdf(xx*alpha,
                                                   x*alpha*mu,
                                                   mumu*alpha,
                                                   logalpha,
                                                   0)
                            * np.ones(K))
        m = Mu._message_from_children()
        self.assertAllClose(m[0],
                            1/K * (alpha*x) * np.ones(3))
        self.assertAllClose(m[1],
                            -0.5 * 1/K * alpha * np.ones(3))

        # Some parameters do not have cluster plate axis
        Mu = GaussianARD(2, 1,
                         ndim=0,
                         plates=(K,))
        (mu, mumu) = Mu._message_to_child()
        Alpha = Gamma(3, 1) # Note: no cluster plate axis!
        (alpha, logalpha) = Alpha._message_to_child()
        z = Categorical(np.ones(K)/K)
        X = Mixture(z, GaussianARD, Mu, Alpha)
        tau = 4
        Y = GaussianARD(X, tau)
        y = 5
        Y.observe(y)
        (x, xx) = X._message_to_child()
        m = z._message_from_children()
        self.assertAllClose(m[0] * np.ones(K),
                            random.gaussian_logpdf(xx*alpha,
                                                   x*alpha*mu,
                                                   mumu*alpha,
                                                   logalpha,
                                                   0)
                            * np.ones(K))
                                                   
        m = Mu._message_from_children()
        self.assertAllClose(m[0],
                            1/K * (alpha*x) * np.ones(3))
        self.assertAllClose(m[1],
                            -0.5 * 1/K * alpha * np.ones(3))

        # Cluster assignments do not have as many plate axes as parameters.
        M = 2
        Mu = GaussianARD(2, 1,
                         ndim=0,
                         plates=(K,M))
        (mu, mumu) = Mu._message_to_child()
        Alpha = Gamma(3, 1,
                      plates=(K,M))
        (alpha, logalpha) = Alpha._message_to_child()
        z = Categorical(np.ones(K)/K)
        X = Mixture(z, GaussianARD, Mu, Alpha, cluster_plate=-2)
        tau = 4
        Y = GaussianARD(X, tau)
        y = 5 * np.ones(M)
        Y.observe(y)
        (x, xx) = X._message_to_child()
        m = z._message_from_children()
        self.assertAllClose(m[0]*np.ones(K),
                            np.sum(random.gaussian_logpdf(xx*alpha,
                                                          x*alpha*mu,
                                                          mumu*alpha,
                                                          logalpha,
                                                          0) *
                                   np.ones((K,M)),
                                   axis=-1))
                                                   
        m = Mu._message_from_children()
        self.assertAllClose(m[0] * np.ones((K,M)),
                            1/K * (alpha*x) * np.ones((K,M)))
        self.assertAllClose(m[1] * np.ones((K,M)),
                            -0.5 * 1/K * alpha * np.ones((K,M)))
        

        # Mixed distribution broadcasts g
        # This tests for a found bug. The bug caused an error.
#.........這裏部分代碼省略.........
開發者ID:chagge,項目名稱:bayespy,代碼行數:103,代碼來源:test_mixture.py

示例8: test_message_to_parent

# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import _message_to_child [as 別名]
    def test_message_to_parent(self):
        """
        Test the message to parents of Mixture node.
        """

        K = 3

        # Broadcasting the moments on the cluster axis
        Mu = GaussianARD(2, 1,
                         ndim=0,
                         plates=(K,))
        (mu, mumu) = Mu._message_to_child()
        Alpha = Gamma(3, 1,
                      plates=(K,))
        (alpha, logalpha) = Alpha._message_to_child()
        z = Categorical(np.ones(K)/K)
        X = Mixture(z, GaussianARD, Mu, Alpha)
        tau = 4
        Y = GaussianARD(X, tau)
        y = 5
        Y.observe(y)
        (x, xx) = X._message_to_child()
        m = z._message_from_children()
        self.assertAllClose(m[0] * np.ones(K),
                            random.gaussian_logpdf(xx*alpha,
                                                   x*alpha*mu,
                                                   mumu*alpha,
                                                   logalpha,
                                                   0)
                            * np.ones(K))
        m = Mu._message_from_children()
        self.assertAllClose(m[0],
                            1/K * (alpha*x) * np.ones(3))
        self.assertAllClose(m[1],
                            -0.5 * 1/K * alpha * np.ones(3))

        # Some parameters do not have cluster plate axis
        Mu = GaussianARD(2, 1,
                         ndim=0,
                         plates=(K,))
        (mu, mumu) = Mu._message_to_child()
        Alpha = Gamma(3, 1) # Note: no cluster plate axis!
        (alpha, logalpha) = Alpha._message_to_child()
        z = Categorical(np.ones(K)/K)
        X = Mixture(z, GaussianARD, Mu, Alpha)
        tau = 4
        Y = GaussianARD(X, tau)
        y = 5
        Y.observe(y)
        (x, xx) = X._message_to_child()
        m = z._message_from_children()
        self.assertAllClose(m[0] * np.ones(K),
                            random.gaussian_logpdf(xx*alpha,
                                                   x*alpha*mu,
                                                   mumu*alpha,
                                                   logalpha,
                                                   0)
                            * np.ones(K))
                                                   
        m = Mu._message_from_children()
        self.assertAllClose(m[0],
                            1/K * (alpha*x) * np.ones(3))
        self.assertAllClose(m[1],
                            -0.5 * 1/K * alpha * np.ones(3))

        # Cluster assignments do not have as many plate axes as parameters.
        M = 2
        Mu = GaussianARD(2, 1,
                         ndim=0,
                         plates=(K,M))
        (mu, mumu) = Mu._message_to_child()
        Alpha = Gamma(3, 1,
                      plates=(K,M))
        (alpha, logalpha) = Alpha._message_to_child()
        z = Categorical(np.ones(K)/K)
        X = Mixture(z, GaussianARD, Mu, Alpha, cluster_plate=-2)
        tau = 4
        Y = GaussianARD(X, tau)
        y = 5 * np.ones(M)
        Y.observe(y)
        (x, xx) = X._message_to_child()
        m = z._message_from_children()
        self.assertAllClose(m[0]*np.ones(K),
                            np.sum(random.gaussian_logpdf(xx*alpha,
                                                          x*alpha*mu,
                                                          mumu*alpha,
                                                          logalpha,
                                                          0) *
                                   np.ones((K,M)),
                                   axis=-1))
                                                   
        m = Mu._message_from_children()
        self.assertAllClose(m[0] * np.ones((K,M)),
                            1/K * (alpha*x) * np.ones((K,M)))
        self.assertAllClose(m[1] * np.ones((K,M)),
                            -0.5 * 1/K * alpha * np.ones((K,M)))
        

        # Mixed distribution broadcasts g
        # This tests for a found bug. The bug caused an error.
#.........這裏部分代碼省略.........
開發者ID:agile-innovations,項目名稱:bayespy,代碼行數:103,代碼來源:test_mixture.py

示例9: test_message_to_parent

# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import _message_to_child [as 別名]
    def test_message_to_parent(self):
        """
        Test the message to parents of Mixture node.
        """

        K = 3

        # Broadcasting the moments on the cluster axis
        Mu = GaussianARD(2, 1,
                         ndim=0,
                         plates=(K,))
        (mu, mumu) = Mu._message_to_child()
        Alpha = Gamma(3, 1,
                      plates=(K,))
        (alpha, logalpha) = Alpha._message_to_child()
        z = Categorical(np.ones(K)/K)
        X = Mixture(z, GaussianARD, Mu, Alpha)
        tau = 4
        Y = GaussianARD(X, tau)
        y = 5
        Y.observe(y)
        (x, xx) = X._message_to_child()
        m = X._message_to_parent(0)
        self.assertAllClose(m[0],
                            random.gaussian_logpdf(xx*alpha,
                                                   x*alpha*mu,
                                                   mumu*alpha,
                                                   logalpha,
                                                   0))
                                                   
        m = X._message_to_parent(1)
        self.assertAllClose(m[0],
                            1/K * (alpha*x) * np.ones(3))
        self.assertAllClose(m[1],
                            -0.5 * 1/K * alpha * np.ones(3))

        # Some parameters do not have cluster plate axis
        Mu = GaussianARD(2, 1,
                         ndim=0,
                         plates=(K,))
        (mu, mumu) = Mu._message_to_child()
        Alpha = Gamma(3, 1) # Note: no cluster plate axis!
        (alpha, logalpha) = Alpha._message_to_child()
        z = Categorical(np.ones(K)/K)
        X = Mixture(z, GaussianARD, Mu, Alpha)
        tau = 4
        Y = GaussianARD(X, tau)
        y = 5
        Y.observe(y)
        (x, xx) = X._message_to_child()
        m = X._message_to_parent(0)
        self.assertAllClose(m[0],
                            random.gaussian_logpdf(xx*alpha,
                                                   x*alpha*mu,
                                                   mumu*alpha,
                                                   logalpha,
                                                   0))
                                                   
        m = X._message_to_parent(1)
        self.assertAllClose(m[0],
                            1/K * (alpha*x) * np.ones(3))
        self.assertAllClose(m[1],
                            -0.5 * 1/K * alpha * np.ones(3))

        # Cluster assignments do not have as many plate axes as parameters.
        M = 2
        Mu = GaussianARD(2, 1,
                         ndim=0,
                         plates=(K,M))
        (mu, mumu) = Mu._message_to_child()
        Alpha = Gamma(3, 1,
                      plates=(K,M))
        (alpha, logalpha) = Alpha._message_to_child()
        z = Categorical(np.ones(K)/K)
        X = Mixture(z, GaussianARD, Mu, Alpha, cluster_plate=-2)
        tau = 4
        Y = GaussianARD(X, tau)
        y = 5 * np.ones(M)
        Y.observe(y)
        (x, xx) = X._message_to_child()
        m = X._message_to_parent(0)
        self.assertAllClose(m[0]*np.ones(K),
                            np.sum(random.gaussian_logpdf(xx*alpha,
                                                          x*alpha*mu,
                                                          mumu*alpha,
                                                          logalpha,
                                                          0) *
                                   np.ones((K,M)),
                                   axis=-1))
                                                   
        m = X._message_to_parent(1)
        self.assertAllClose(m[0] * np.ones((K,M)),
                            1/K * (alpha*x) * np.ones((K,M)))
        self.assertAllClose(m[1] * np.ones((K,M)),
                            -0.5 * 1/K * alpha * np.ones((K,M)))
        

        pass
開發者ID:Sandy4321,項目名稱:bayespy,代碼行數:100,代碼來源:test_mixture.py


注:本文中的bayespy.nodes.Mixture._message_to_child方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。