本文整理匯總了Python中bayespy.nodes.Mixture.observe方法的典型用法代碼示例。如果您正苦於以下問題:Python Mixture.observe方法的具體用法?Python Mixture.observe怎麽用?Python Mixture.observe使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類bayespy.nodes.Mixture
的用法示例。
在下文中一共展示了Mixture.observe方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_gaussian_mixture_plot
# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import observe [as 別名]
def test_gaussian_mixture_plot():
"""
Test the gaussian_mixture plotting function.
The code is from http://www.bayespy.org/examples/gmm.html
"""
np.random.seed(1)
y0 = np.random.multivariate_normal([0, 0], [[1, 0], [0, 0.02]], size=50)
y1 = np.random.multivariate_normal([0, 0], [[0.02, 0], [0, 1]], size=50)
y2 = np.random.multivariate_normal([2, 2], [[1, -0.9], [-0.9, 1]], size=50)
y3 = np.random.multivariate_normal([-2, -2], [[0.1, 0], [0, 0.1]], size=50)
y = np.vstack([y0, y1, y2, y3])
bpplt.pyplot.plot(y[:,0], y[:,1], 'rx')
N = 200
D = 2
K = 10
alpha = Dirichlet(1e-5*np.ones(K),
name='alpha')
Z = Categorical(alpha,
plates=(N,),
name='z')
mu = Gaussian(np.zeros(D), 1e-5*np.identity(D),
plates=(K,),
name='mu')
Lambda = Wishart(D, 1e-5*np.identity(D),
plates=(K,),
name='Lambda')
Y = Mixture(Z, Gaussian, mu, Lambda,
name='Y')
Z.initialize_from_random()
Q = VB(Y, mu, Lambda, Z, alpha)
Y.observe(y)
Q.update(repeat=1000)
bpplt.gaussian_mixture_2d(Y, scale=2)
# Have to define these limits because on some particular environments these
# may otherwise differ and thus result in an image comparsion failure
bpplt.pyplot.xlim([-3, 6])
bpplt.pyplot.ylim([-3, 5])
示例2: test_deterministic_mappings
# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import observe [as 別名]
def test_deterministic_mappings(self):
x = Categorical([0.8, 0.2])
y = Mixture(
x,
Categorical,
[
[0.10, 0.90],
[0.00, 1.00],
]
)
y.observe(0)
x.update()
self.assertAllClose(x.u[0], [1, 0])
y.observe(1)
x.update()
p = np.array([0.8*0.9, 0.2*1.0])
self.assertAllClose(x.u[0], p / np.sum(p))
pass
示例3: test_gradient
# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import observe [as 別名]
def test_gradient(self):
"""
Check the Euclidean gradient of the categorical node
"""
Z = Categorical([[0.3, 0.5, 0.2], [0.1, 0.6, 0.3]])
Y = Mixture(Z, Gamma, [2, 3, 4], [5, 6, 7])
Y.observe([4.2, 0.2])
def f(x):
Z.set_parameters([np.reshape(x, Z.get_shape(0))])
return Z.lower_bound_contribution() + Y.lower_bound_contribution()
def df(x):
Z.set_parameters([np.reshape(x, Z.get_shape(0))])
g = Z.get_riemannian_gradient()
return Z.get_gradient(g)[0]
x0 = np.ravel(np.log([[2, 3, 7], [0.1, 3, 1]]))
self.assertAllClose(
misc.gradient(f, x0),
np.ravel(df(x0))
)
pass
示例4: _setup_bernoulli_mixture
# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import observe [as 別名]
def _setup_bernoulli_mixture():
"""
Setup code for the hinton tests.
This code is from http://www.bayespy.org/examples/bmm.html
"""
np.random.seed(1)
p0 = [0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9]
p1 = [0.1, 0.1, 0.1, 0.1, 0.1, 0.9, 0.9, 0.9, 0.9, 0.9]
p2 = [0.9, 0.9, 0.9, 0.9, 0.9, 0.1, 0.1, 0.1, 0.1, 0.1]
p = np.array([p0, p1, p2])
z = random.categorical([1/3, 1/3, 1/3], size=100)
x = random.bernoulli(p[z])
N = 100
D = 10
K = 10
R = Dirichlet(K*[1e-5],
name='R')
Z = Categorical(R,
plates=(N,1),
name='Z')
P = Beta([0.5, 0.5],
plates=(D,K),
name='P')
X = Mixture(Z, Bernoulli, P)
Q = VB(Z, R, X, P)
P.initialize_from_random()
X.observe(x)
Q.update(repeat=1000)
return (R,P,Z)
示例5: Dirichlet
# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import observe [as 別名]
p = np.array([p0, p1, p2])
z = random.categorical([1/3, 1/3, 1/3], size=100)
x = random.bernoulli(p[z])
N = 100
D = 10
K = 3
R = Dirichlet(K*[1e-5],name='R')
Z = Categorical(R,plates=(N,1),name='Z')
P = Beta([0.5, 0.5],plates=(D,K),name='P')
X = Mixture(Z, Bernoulli, P)
Q = VB(Z, R, X, P)
P.initialize_from_random()
X.observe(x)
Q.update(repeat=1000)
#print(" P:")
#print( P.get_moments() )
#print(" R:")
#print( R.get_moments() )
print(" Z:")
print( Z.get_moments() )
print(" X:")
print( X.get_moments() )
示例6: Categorical
# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import observe [as 別名]
smoking = Categorical([0.5, 0.5])
lung = Mixture(smoking, Categorical, [[0.98, 0.02], [0.25, 0.75]])
bronchitis = Mixture(smoking, Categorical, [[0.97, 0.03], [0.08, 0.92]])
xray = Mixture(tuberculosis, Mixture, lung, Categorical,
_or([0.96, 0.04], [0.115, 0.885]))
dyspnea = Mixture(bronchitis, Mixture, tuberculosis, Mixture, lung, Categorical,
[_or([0.6, 0.4], [0.18, 0.82]),
_or([0.11, 0.89], [0.04, 0.96])])
# Mark observations
tuberculosis.observe(TRUE)
smoking.observe(FALSE)
bronchitis.observe(TRUE) # not a "chance" observation as in the original example
# Run inference
Q = VB(dyspnea, xray, bronchitis, lung, smoking, tuberculosis, asia)
Q.update(repeat=100)
# Show results
print("P(asia):", asia.get_moments()[0][TRUE])
print("P(tuberculosis):", tuberculosis.get_moments()[0][TRUE])
print("P(smoking):", smoking.get_moments()[0][TRUE])
print("P(lung):", lung.get_moments()[0][TRUE])
print("P(bronchitis):", bronchitis.get_moments()[0][TRUE])
print("P(xray):", xray.get_moments()[0][TRUE])
print("P(dyspnea):", dyspnea.get_moments()[0][TRUE])
示例7: test_message_to_parent
# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import observe [as 別名]
def test_message_to_parent(self):
"""
Test the message to parents of Mixture node.
"""
K = 3
# Broadcasting the moments on the cluster axis
Mu = GaussianARD(2, 1,
ndim=0,
plates=(K,))
(mu, mumu) = Mu._message_to_child()
Alpha = Gamma(3, 1,
plates=(K,))
(alpha, logalpha) = Alpha._message_to_child()
z = Categorical(np.ones(K)/K)
X = Mixture(z, GaussianARD, Mu, Alpha)
tau = 4
Y = GaussianARD(X, tau)
y = 5
Y.observe(y)
(x, xx) = X._message_to_child()
m = z._message_from_children()
self.assertAllClose(m[0] * np.ones(K),
random.gaussian_logpdf(xx*alpha,
x*alpha*mu,
mumu*alpha,
logalpha,
0)
* np.ones(K))
m = Mu._message_from_children()
self.assertAllClose(m[0],
1/K * (alpha*x) * np.ones(3))
self.assertAllClose(m[1],
-0.5 * 1/K * alpha * np.ones(3))
# Some parameters do not have cluster plate axis
Mu = GaussianARD(2, 1,
ndim=0,
plates=(K,))
(mu, mumu) = Mu._message_to_child()
Alpha = Gamma(3, 1) # Note: no cluster plate axis!
(alpha, logalpha) = Alpha._message_to_child()
z = Categorical(np.ones(K)/K)
X = Mixture(z, GaussianARD, Mu, Alpha)
tau = 4
Y = GaussianARD(X, tau)
y = 5
Y.observe(y)
(x, xx) = X._message_to_child()
m = z._message_from_children()
self.assertAllClose(m[0] * np.ones(K),
random.gaussian_logpdf(xx*alpha,
x*alpha*mu,
mumu*alpha,
logalpha,
0)
* np.ones(K))
m = Mu._message_from_children()
self.assertAllClose(m[0],
1/K * (alpha*x) * np.ones(3))
self.assertAllClose(m[1],
-0.5 * 1/K * alpha * np.ones(3))
# Cluster assignments do not have as many plate axes as parameters.
M = 2
Mu = GaussianARD(2, 1,
ndim=0,
plates=(K,M))
(mu, mumu) = Mu._message_to_child()
Alpha = Gamma(3, 1,
plates=(K,M))
(alpha, logalpha) = Alpha._message_to_child()
z = Categorical(np.ones(K)/K)
X = Mixture(z, GaussianARD, Mu, Alpha, cluster_plate=-2)
tau = 4
Y = GaussianARD(X, tau)
y = 5 * np.ones(M)
Y.observe(y)
(x, xx) = X._message_to_child()
m = z._message_from_children()
self.assertAllClose(m[0]*np.ones(K),
np.sum(random.gaussian_logpdf(xx*alpha,
x*alpha*mu,
mumu*alpha,
logalpha,
0) *
np.ones((K,M)),
axis=-1))
m = Mu._message_from_children()
self.assertAllClose(m[0] * np.ones((K,M)),
1/K * (alpha*x) * np.ones((K,M)))
self.assertAllClose(m[1] * np.ones((K,M)),
-0.5 * 1/K * alpha * np.ones((K,M)))
# Mixed distribution broadcasts g
# This tests for a found bug. The bug caused an error.
#.........這裏部分代碼省略.........
示例8: run
# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import observe [as 別名]
def run(N=100000, N_batch=50, seed=42, maxiter=100, plot=True):
"""
Run deterministic annealing demo for 1-D Gaussian mixture.
"""
if seed is not None:
np.random.seed(seed)
# Number of clusters in the model
K = 20
# Dimensionality of the data
D = 5
# Generate data
K_true = 10
spread = 5
means = spread * np.random.randn(K_true, D)
z = random.categorical(np.ones(K_true), size=N)
data = np.empty((N,D))
for n in range(N):
data[n] = means[z[n]] + np.random.randn(D)
#
# Standard VB-EM algorithm
#
# Full model
mu = Gaussian(np.zeros(D), np.identity(D),
plates=(K,),
name='means')
alpha = Dirichlet(np.ones(K),
name='class probabilities')
Z = Categorical(alpha,
plates=(N,),
name='classes')
Y = Mixture(Z, Gaussian, mu, np.identity(D),
name='observations')
# Break symmetry with random initialization of the means
mu.initialize_from_random()
# Put the data in
Y.observe(data)
# Run inference
Q = VB(Y, Z, mu, alpha)
Q.save(mu)
Q.update(repeat=maxiter)
if plot:
bpplt.pyplot.plot(np.cumsum(Q.cputime), Q.L, 'k-')
max_cputime = np.sum(Q.cputime[~np.isnan(Q.cputime)])
#
# Stochastic variational inference
#
# Construct smaller model (size of the mini-batch)
mu = Gaussian(np.zeros(D), np.identity(D),
plates=(K,),
name='means')
alpha = Dirichlet(np.ones(K),
name='class probabilities')
Z = Categorical(alpha,
plates=(N_batch,),
plates_multiplier=(N/N_batch,),
name='classes')
Y = Mixture(Z, Gaussian, mu, np.identity(D),
name='observations')
# Break symmetry with random initialization of the means
mu.initialize_from_random()
# Inference engine
Q = VB(Y, Z, mu, alpha, autosave_filename=Q.autosave_filename)
Q.load(mu)
# Because using mini-batches, messages need to be multiplied appropriately
print("Stochastic variational inference...")
Q.ignore_bound_checks = True
maxiter *= int(N/N_batch)
delay = 1
forgetting_rate = 0.7
for n in range(maxiter):
# Observe a mini-batch
subset = np.random.choice(N, N_batch)
Y.observe(data[subset,:])
# Learn intermediate variables
Q.update(Z)
# Set step length
step = (n + delay) ** (-forgetting_rate)
# Stochastic gradient for the global variables
Q.gradient_step(mu, alpha, scale=step)
#.........這裏部分代碼省略.........
示例9: run
# 需要導入模塊: from bayespy.nodes import Mixture [as 別名]
# 或者: from bayespy.nodes.Mixture import observe [as 別名]
def run(N=500, seed=42, maxiter=100, plot=True):
"""
Run deterministic annealing demo for 1-D Gaussian mixture.
"""
if seed is not None:
np.random.seed(seed)
mu = GaussianARD(0, 1,
plates=(2,),
name='means')
Z = Categorical([0.3, 0.7],
plates=(N,),
name='classes')
Y = Mixture(Z, GaussianARD, mu, 1,
name='observations')
# Generate data
z = Z.random()
data = np.empty(N)
for n in range(N):
data[n] = [4, -4][z[n]]
Y.observe(data)
# Initialize means closer to the inferior local optimum in which the
# cluster means are swapped
mu.initialize_from_value([0, 6])
Q = VB(Y, Z, mu)
Q.save()
#
# Standard VB-EM algorithm
#
Q.update(repeat=maxiter)
mu_vbem = mu.u[0].copy()
L_vbem = Q.compute_lowerbound()
#
# VB-EM with deterministic annealing
#
Q.load()
beta = 0.01
while beta < 1.0:
beta = min(beta*1.2, 1.0)
print("Set annealing to %.2f" % beta)
Q.set_annealing(beta)
Q.update(repeat=maxiter, tol=1e-4)
mu_anneal = mu.u[0].copy()
L_anneal = Q.compute_lowerbound()
print("==============================")
print("RESULTS FOR VB-EM vs ANNEALING")
print("Fixed component probabilities:", np.array([0.3, 0.7]))
print("True component means:", np.array([4, -4]))
print("VB-EM component means:", mu_vbem)
print("VB-EM lower bound:", L_vbem)
print("Annealed VB-EM component means:", mu_anneal)
print("Annealed VB-EM lower bound:", L_anneal)
return