本文整理匯總了Python中apache_beam.metrics.execution.MetricsContainer.to_runner_api方法的典型用法代碼示例。如果您正苦於以下問題:Python MetricsContainer.to_runner_api方法的具體用法?Python MetricsContainer.to_runner_api怎麽用?Python MetricsContainer.to_runner_api使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類apache_beam.metrics.execution.MetricsContainer
的用法示例。
在下文中一共展示了MetricsContainer.to_runner_api方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Operation
# 需要導入模塊: from apache_beam.metrics.execution import MetricsContainer [as 別名]
# 或者: from apache_beam.metrics.execution.MetricsContainer import to_runner_api [as 別名]
class Operation(object):
"""An operation representing the live version of a work item specification.
An operation can have one or more outputs and for each output it can have
one or more receiver operations that will take that as input.
"""
def __init__(self, operation_name, spec, counter_factory, state_sampler):
"""Initializes a worker operation instance.
Args:
operation_name: The system name assigned by the runner for this
operation.
spec: A operation_specs.Worker* instance.
counter_factory: The CounterFactory to use for our counters.
state_sampler: The StateSampler for the current operation.
"""
self.operation_name = operation_name
self.spec = spec
self.counter_factory = counter_factory
self.consumers = collections.defaultdict(list)
# These are overwritten in the legacy harness.
self.step_name = operation_name
self.metrics_container = MetricsContainer(self.step_name)
self.scoped_metrics_container = ScopedMetricsContainer(
self.metrics_container)
self.state_sampler = state_sampler
self.scoped_start_state = self.state_sampler.scoped_state(
self.operation_name, 'start')
self.scoped_process_state = self.state_sampler.scoped_state(
self.operation_name, 'process')
self.scoped_finish_state = self.state_sampler.scoped_state(
self.operation_name, 'finish')
# TODO(ccy): the '-abort' state can be added when the abort is supported in
# Operations.
self.receivers = []
def start(self):
"""Start operation."""
self.debug_logging_enabled = logging.getLogger().isEnabledFor(
logging.DEBUG)
# Everything except WorkerSideInputSource, which is not a
# top-level operation, should have output_coders
if getattr(self.spec, 'output_coders', None):
self.receivers = [ConsumerSet(self.counter_factory, self.step_name,
i, self.consumers[i], coder)
for i, coder in enumerate(self.spec.output_coders)]
def finish(self):
"""Finish operation."""
pass
def process(self, o):
"""Process element in operation."""
pass
def output(self, windowed_value, output_index=0):
cython.cast(Receiver, self.receivers[output_index]).receive(windowed_value)
def add_receiver(self, operation, output_index=0):
"""Adds a receiver operation for the specified output."""
self.consumers[output_index].append(operation)
def progress_metrics(self):
return beam_fn_api_pb2.Metrics.PTransform(
processed_elements=beam_fn_api_pb2.Metrics.PTransform.ProcessedElements(
measured=beam_fn_api_pb2.Metrics.PTransform.Measured(
total_time_spent=(
self.scoped_start_state.sampled_seconds()
+ self.scoped_process_state.sampled_seconds()
+ self.scoped_finish_state.sampled_seconds()),
# Multi-output operations should override this.
output_element_counts=(
# If there is exactly one output, we can unambiguously
# fix its name later, which we do.
# TODO(robertwb): Plumb the actual name here.
{'ONLY_OUTPUT': self.receivers[0].opcounter
.element_counter.value()}
if len(self.receivers) == 1
else None))),
user=self.metrics_container.to_runner_api())
def __str__(self):
"""Generates a useful string for this object.
Compactly displays interesting fields. In particular, pickled
fields are not displayed. Note that we collapse the fields of the
contained Worker* object into this object, since there is a 1-1
mapping between Operation and operation_specs.Worker*.
Returns:
Compact string representing this object.
"""
return self.str_internal()
def str_internal(self, is_recursive=False):
"""Internal helper for __str__ that supports recursion.
#.........這裏部分代碼省略.........
示例2: Operation
# 需要導入模塊: from apache_beam.metrics.execution import MetricsContainer [as 別名]
# 或者: from apache_beam.metrics.execution.MetricsContainer import to_runner_api [as 別名]
#.........這裏部分代碼省略.........
return None
def finish(self):
"""Finish operation."""
pass
def reset(self):
self.metrics_container.reset()
def output(self, windowed_value, output_index=0):
cython.cast(Receiver, self.receivers[output_index]).receive(windowed_value)
def add_receiver(self, operation, output_index=0):
"""Adds a receiver operation for the specified output."""
self.consumers[output_index].append(operation)
def progress_metrics(self):
return beam_fn_api_pb2.Metrics.PTransform(
processed_elements=beam_fn_api_pb2.Metrics.PTransform.ProcessedElements(
measured=beam_fn_api_pb2.Metrics.PTransform.Measured(
total_time_spent=(
self.scoped_start_state.sampled_seconds()
+ self.scoped_process_state.sampled_seconds()
+ self.scoped_finish_state.sampled_seconds()),
# Multi-output operations should override this.
output_element_counts=(
# If there is exactly one output, we can unambiguously
# fix its name later, which we do.
# TODO(robertwb): Plumb the actual name here.
{'ONLY_OUTPUT': self.receivers[0].opcounter
.element_counter.value()}
if len(self.receivers) == 1
else None))),
user=self.metrics_container.to_runner_api())
def monitoring_infos(self, transform_id):
"""Returns the list of MonitoringInfos collected by this operation."""
all_monitoring_infos = self.execution_time_monitoring_infos(transform_id)
all_monitoring_infos.update(
self.element_count_monitoring_infos(transform_id))
all_monitoring_infos.update(self.user_monitoring_infos(transform_id))
return all_monitoring_infos
def element_count_monitoring_infos(self, transform_id):
"""Returns the element count MonitoringInfo collected by this operation."""
if len(self.receivers) == 1:
# If there is exactly one output, we can unambiguously
# fix its name later, which we do.
# TODO(robertwb): Plumb the actual name here.
mi = monitoring_infos.int64_counter(
monitoring_infos.ELEMENT_COUNT_URN,
self.receivers[0].opcounter.element_counter.value(),
ptransform=transform_id,
tag='ONLY_OUTPUT' if len(self.receivers) == 1 else str(None),
)
return {monitoring_infos.to_key(mi) : mi}
return {}
def user_monitoring_infos(self, transform_id):
"""Returns the user MonitoringInfos collected by this operation."""
return self.metrics_container.to_runner_api_monitoring_infos(transform_id)
def execution_time_monitoring_infos(self, transform_id):
total_time_spent_msecs = (
self.scoped_start_state.sampled_msecs_int()
+ self.scoped_process_state.sampled_msecs_int()