當前位置: 首頁>>代碼示例>>Python>>正文


Python MetricsContainer.reset方法代碼示例

本文整理匯總了Python中apache_beam.metrics.execution.MetricsContainer.reset方法的典型用法代碼示例。如果您正苦於以下問題:Python MetricsContainer.reset方法的具體用法?Python MetricsContainer.reset怎麽用?Python MetricsContainer.reset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在apache_beam.metrics.execution.MetricsContainer的用法示例。


在下文中一共展示了MetricsContainer.reset方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: Operation

# 需要導入模塊: from apache_beam.metrics.execution import MetricsContainer [as 別名]
# 或者: from apache_beam.metrics.execution.MetricsContainer import reset [as 別名]
class Operation(object):
  """An operation representing the live version of a work item specification.

  An operation can have one or more outputs and for each output it can have
  one or more receiver operations that will take that as input.
  """

  def __init__(self, name_context, spec, counter_factory, state_sampler):
    """Initializes a worker operation instance.

    Args:
      name_context: A NameContext instance or string(deprecated), with the
        name information for this operation.
      spec: A operation_specs.Worker* instance.
      counter_factory: The CounterFactory to use for our counters.
      state_sampler: The StateSampler for the current operation.
    """
    if isinstance(name_context, common.NameContext):
      # TODO(BEAM-4028): Clean this up once it's completely migrated.
      # We use the specific operation name that is used for metrics and state
      # sampling.
      self.name_context = name_context
    else:
      self.name_context = common.NameContext(name_context)

    self.spec = spec
    self.counter_factory = counter_factory
    self.execution_context = None
    self.consumers = collections.defaultdict(list)

    # These are overwritten in the legacy harness.
    self.metrics_container = MetricsContainer(self.name_context.metrics_name())

    self.state_sampler = state_sampler
    self.scoped_start_state = self.state_sampler.scoped_state(
        self.name_context, 'start', metrics_container=self.metrics_container)
    self.scoped_process_state = self.state_sampler.scoped_state(
        self.name_context, 'process', metrics_container=self.metrics_container)
    self.scoped_finish_state = self.state_sampler.scoped_state(
        self.name_context, 'finish', metrics_container=self.metrics_container)
    # TODO(ccy): the '-abort' state can be added when the abort is supported in
    # Operations.
    self.receivers = []
    # Legacy workers cannot call setup() until after setting additional state
    # on the operation.
    self.setup_done = False

  def setup(self):
    with self.scoped_start_state:
      self.debug_logging_enabled = logging.getLogger().isEnabledFor(
          logging.DEBUG)
      # Everything except WorkerSideInputSource, which is not a
      # top-level operation, should have output_coders
      #TODO(pabloem): Define better what step name is used here.
      if getattr(self.spec, 'output_coders', None):
        self.receivers = [
            ConsumerSet.create(
                self.counter_factory,
                self.name_context.logging_name(),
                i,
                self.consumers[i], coder)
            for i, coder in enumerate(self.spec.output_coders)]
    self.setup_done = True

  def start(self):
    """Start operation."""
    if not self.setup_done:
      # For legacy workers.
      self.setup()

  def process(self, o):
    """Process element in operation."""
    pass

  def try_split(self, fraction_of_remainder):
    return None

  def finish(self):
    """Finish operation."""
    pass

  def reset(self):
    self.metrics_container.reset()

  def output(self, windowed_value, output_index=0):
    cython.cast(Receiver, self.receivers[output_index]).receive(windowed_value)

  def add_receiver(self, operation, output_index=0):
    """Adds a receiver operation for the specified output."""
    self.consumers[output_index].append(operation)

  def progress_metrics(self):
    return beam_fn_api_pb2.Metrics.PTransform(
        processed_elements=beam_fn_api_pb2.Metrics.PTransform.ProcessedElements(
            measured=beam_fn_api_pb2.Metrics.PTransform.Measured(
                total_time_spent=(
                    self.scoped_start_state.sampled_seconds()
                    + self.scoped_process_state.sampled_seconds()
                    + self.scoped_finish_state.sampled_seconds()),
                # Multi-output operations should override this.
#.........這裏部分代碼省略.........
開發者ID:eralmas7,項目名稱:beam,代碼行數:103,代碼來源:operations.py


注:本文中的apache_beam.metrics.execution.MetricsContainer.reset方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。