當前位置: 首頁>>代碼示例>>Python>>正文


Python MetricsContainer.get_cumulative方法代碼示例

本文整理匯總了Python中apache_beam.metrics.execution.MetricsContainer.get_cumulative方法的典型用法代碼示例。如果您正苦於以下問題:Python MetricsContainer.get_cumulative方法的具體用法?Python MetricsContainer.get_cumulative怎麽用?Python MetricsContainer.get_cumulative使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在apache_beam.metrics.execution.MetricsContainer的用法示例。


在下文中一共展示了MetricsContainer.get_cumulative方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: from apache_beam.metrics.execution import MetricsContainer [as 別名]
# 或者: from apache_beam.metrics.execution.MetricsContainer import get_cumulative [as 別名]
  def call(self):
    self._call_count += 1
    assert self._call_count <= (1 + len(self._applied_ptransform.side_inputs))
    metrics_container = MetricsContainer(self._applied_ptransform.full_label)
    scoped_metrics_container = ScopedMetricsContainer(metrics_container)

    for side_input in self._applied_ptransform.side_inputs:
      if side_input not in self._side_input_values:
        has_result, value = (
            self._evaluation_context.get_value_or_schedule_after_output(
                side_input, self))
        if not has_result:
          # Monitor task will reschedule this executor once the side input is
          # available.
          return
        self._side_input_values[side_input] = value

    side_input_values = [self._side_input_values[side_input]
                         for side_input in self._applied_ptransform.side_inputs]

    try:
      evaluator = self._transform_evaluator_registry.get_evaluator(
          self._applied_ptransform, self._input_bundle,
          side_input_values, scoped_metrics_container)

      if self._fired_timers:
        for timer_firing in self._fired_timers:
          evaluator.process_timer_wrapper(timer_firing)

      if self._input_bundle:
        for value in self._input_bundle.get_elements_iterable():
          evaluator.process_element(value)

      with scoped_metrics_container:
        result = evaluator.finish_bundle()
        result.logical_metric_updates = metrics_container.get_cumulative()

      if self._evaluation_context.has_cache:
        for uncommitted_bundle in result.uncommitted_output_bundles:
          self._evaluation_context.append_to_cache(
              self._applied_ptransform, uncommitted_bundle.tag,
              uncommitted_bundle.get_elements_iterable())
        undeclared_tag_values = result.undeclared_tag_values
        if undeclared_tag_values:
          for tag, value in undeclared_tag_values.iteritems():
            self._evaluation_context.append_to_cache(
                self._applied_ptransform, tag, value)

      self._completion_callback.handle_result(self, self._input_bundle, result)
      return result
    except Exception as e:  # pylint: disable=broad-except
      self._completion_callback.handle_exception(self, e)
    finally:
      self._evaluation_context.metrics().commit_physical(
          self._input_bundle,
          metrics_container.get_cumulative())
      self._transform_evaluation_state.complete(self)
開發者ID:gamars,項目名稱:beam,代碼行數:59,代碼來源:executor.py

示例2: test_uses_right_container

# 需要導入模塊: from apache_beam.metrics.execution import MetricsContainer [as 別名]
# 或者: from apache_beam.metrics.execution.MetricsContainer import get_cumulative [as 別名]
  def test_uses_right_container(self):
    c1 = MetricsContainer('step1')
    c2 = MetricsContainer('step2')
    counter = Metrics.counter('ns', 'name')
    MetricsEnvironment.set_current_container(c1)
    counter.inc()
    MetricsEnvironment.set_current_container(c2)
    counter.inc(3)
    MetricsEnvironment.unset_current_container()

    self.assertEqual(
        c1.get_cumulative().counters.items(),
        [(MetricKey('step1', MetricName('ns', 'name')), 1)])

    self.assertEqual(
        c2.get_cumulative().counters.items(),
        [(MetricKey('step2', MetricName('ns', 'name')), 3)])
開發者ID:eljefe6a,項目名稱:incubator-beam,代碼行數:19,代碼來源:execution_test.py

示例3: test_get_cumulative_or_updates

# 需要導入模塊: from apache_beam.metrics.execution import MetricsContainer [as 別名]
# 或者: from apache_beam.metrics.execution.MetricsContainer import get_cumulative [as 別名]
  def test_get_cumulative_or_updates(self):
    mc = MetricsContainer('astep')

    clean_values = []
    dirty_values = []
    for i in range(1, 11):
      counter = mc.get_counter(MetricName('namespace', 'name{}'.format(i)))
      distribution = mc.get_distribution(
          MetricName('namespace', 'name{}'.format(i)))
      gauge = mc.get_gauge(MetricName('namespace', 'name{}'.format(i)))

      counter.inc(i)
      distribution.update(i)
      gauge.set(i)
      if i % 2 == 0:
        # Some are left to be DIRTY (i.e. not yet committed).
        # Some are left to be CLEAN (i.e. already committed).
        dirty_values.append(i)
        continue
      # Assert: Counter/Distribution is DIRTY or COMMITTING (not CLEAN)
      self.assertEqual(distribution.commit.before_commit(), True)
      self.assertEqual(counter.commit.before_commit(), True)
      self.assertEqual(gauge.commit.before_commit(), True)
      distribution.commit.after_commit()
      counter.commit.after_commit()
      gauge.commit.after_commit()
      # Assert: Counter/Distribution has been committed, therefore it's CLEAN
      self.assertEqual(counter.commit.state, CellCommitState.CLEAN)
      self.assertEqual(distribution.commit.state, CellCommitState.CLEAN)
      self.assertEqual(gauge.commit.state, CellCommitState.CLEAN)
      clean_values.append(i)

    # Retrieve NON-COMMITTED updates.
    logical = mc.get_updates()
    self.assertEqual(len(logical.counters), 5)
    self.assertEqual(len(logical.distributions), 5)
    self.assertEqual(len(logical.gauges), 5)

    self.assertEqual(set(dirty_values),
                     set([v.value for _, v in logical.gauges.items()]))
    self.assertEqual(set(dirty_values),
                     set([v for _, v in logical.counters.items()]))

    # Retrieve ALL updates.
    cumulative = mc.get_cumulative()
    self.assertEqual(len(cumulative.counters), 10)
    self.assertEqual(len(cumulative.distributions), 10)
    self.assertEqual(len(cumulative.gauges), 10)

    self.assertEqual(set(dirty_values + clean_values),
                     set([v for _, v in cumulative.counters.items()]))
    self.assertEqual(set(dirty_values + clean_values),
                     set([v.value for _, v in cumulative.gauges.items()]))
開發者ID:iemejia,項目名稱:incubator-beam,代碼行數:55,代碼來源:execution_test.py

示例4: test_scoped_container

# 需要導入模塊: from apache_beam.metrics.execution import MetricsContainer [as 別名]
# 或者: from apache_beam.metrics.execution.MetricsContainer import get_cumulative [as 別名]
  def test_scoped_container(self):
    c1 = MetricsContainer('mystep')
    c2 = MetricsContainer('myinternalstep')
    with ScopedMetricsContainer(c1):
      self.assertEqual(c1, MetricsEnvironment.current_container())
      counter = Metrics.counter('ns', 'name')
      counter.inc(2)

      with ScopedMetricsContainer(c2):
        self.assertEqual(c2, MetricsEnvironment.current_container())
        counter = Metrics.counter('ns', 'name')
        counter.inc(3)
        self.assertEqual(
            c2.get_cumulative().counters.items(),
            [(MetricKey('myinternalstep', MetricName('ns', 'name')), 3)])

      self.assertEqual(c1, MetricsEnvironment.current_container())
      counter = Metrics.counter('ns', 'name')
      counter.inc(4)
      self.assertEqual(
          c1.get_cumulative().counters.items(),
          [(MetricKey('mystep', MetricName('ns', 'name')), 6)])
開發者ID:eljefe6a,項目名稱:incubator-beam,代碼行數:24,代碼來源:execution_test.py

示例5: call

# 需要導入模塊: from apache_beam.metrics.execution import MetricsContainer [as 別名]
# 或者: from apache_beam.metrics.execution.MetricsContainer import get_cumulative [as 別名]
  def call(self):
    self._call_count += 1
    assert self._call_count <= (1 + len(self._applied_ptransform.side_inputs))
    metrics_container = MetricsContainer(self._applied_ptransform.full_label)
    scoped_metrics_container = ScopedMetricsContainer(metrics_container)

    for side_input in self._applied_ptransform.side_inputs:
      if side_input not in self._side_input_values:
        has_result, value = (
            self._evaluation_context.get_value_or_schedule_after_output(
                side_input, self))
        if not has_result:
          # Monitor task will reschedule this executor once the side input is
          # available.
          return
        self._side_input_values[side_input] = value
    side_input_values = [self._side_input_values[side_input]
                         for side_input in self._applied_ptransform.side_inputs]

    while self._retry_count < self._max_retries_per_bundle:
      try:
        self.attempt_call(metrics_container,
                          scoped_metrics_container,
                          side_input_values)
        break
      except Exception as e:
        self._retry_count += 1
        logging.error(
            'Exception at bundle %r, due to an exception.\n %s',
            self._input_bundle, traceback.format_exc())
        if self._retry_count == self._max_retries_per_bundle:
          logging.error('Giving up after %s attempts.',
                        self._max_retries_per_bundle)
          if self._retry_count == 1:
            logging.info(
                'Use the experimental flag --direct_runner_bundle_retry'
                ' to retry failed bundles (up to %d times).',
                TransformExecutor._MAX_RETRY_PER_BUNDLE)
          self._completion_callback.handle_exception(self, e)

    self._evaluation_context.metrics().commit_physical(
        self._input_bundle,
        metrics_container.get_cumulative())
    self._transform_evaluation_state.complete(self)
開發者ID:eljefe6a,項目名稱:incubator-beam,代碼行數:46,代碼來源:executor.py

示例6: call

# 需要導入模塊: from apache_beam.metrics.execution import MetricsContainer [as 別名]
# 或者: from apache_beam.metrics.execution.MetricsContainer import get_cumulative [as 別名]
  def call(self):
    self._call_count += 1
    assert self._call_count <= (1 + len(self._applied_ptransform.side_inputs))
    metrics_container = MetricsContainer(self._applied_ptransform.full_label)
    scoped_metrics_container = ScopedMetricsContainer(metrics_container)

    for side_input in self._applied_ptransform.side_inputs:
      # Find the projection of main's window onto the side input's window.
      window_mapping_fn = side_input._view_options().get(
          'window_mapping_fn', sideinputs._global_window_mapping_fn)
      main_onto_side_window = window_mapping_fn(self._latest_main_input_window)
      block_until = main_onto_side_window.end

      if side_input not in self._side_input_values:
        value = self._evaluation_context.get_value_or_block_until_ready(
            side_input, self, block_until)
        if not value:
          # Monitor task will reschedule this executor once the side input is
          # available.
          return
        self._side_input_values[side_input] = value
    side_input_values = [self._side_input_values[side_input]
                         for side_input in self._applied_ptransform.side_inputs]

    while self._retry_count < self._max_retries_per_bundle:
      try:
        self.attempt_call(metrics_container,
                          scoped_metrics_container,
                          side_input_values)
        break
      except Exception as e:
        self._retry_count += 1
        logging.error(
            'Exception at bundle %r, due to an exception.\n %s',
            self._input_bundle, traceback.format_exc())
        if self._retry_count == self._max_retries_per_bundle:
          logging.error('Giving up after %s attempts.',
                        self._max_retries_per_bundle)
          self._completion_callback.handle_exception(self, e)

    self._evaluation_context.metrics().commit_physical(
        self._input_bundle,
        metrics_container.get_cumulative())
    self._transform_evaluation_state.complete(self)
開發者ID:apsaltis,項目名稱:incubator-beam,代碼行數:46,代碼來源:executor.py


注:本文中的apache_beam.metrics.execution.MetricsContainer.get_cumulative方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。