本文整理匯總了Python中ROOT.RooAddPdf.plotOn方法的典型用法代碼示例。如果您正苦於以下問題:Python RooAddPdf.plotOn方法的具體用法?Python RooAddPdf.plotOn怎麽用?Python RooAddPdf.plotOn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ROOT.RooAddPdf
的用法示例。
在下文中一共展示了RooAddPdf.plotOn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: PlotSignalShapes
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
def PlotSignalShapes(Selection):
f__ = TFile.Open( "datacards/22June/2dPlots.root")
signal_fname_1 = ("signals/22June/out_{sample:s}_syst.root", "cms_hgg_13TeV" )
signal_fname_2 = ("signals/22June/out_ctcv_{sample:s}_syst.root" , "ctcv" )
samples = {"thw":signal_fname_2, "thq":signal_fname_2, "tth":signal_fname_1 , "vh":signal_fname_1 }
purity_h_name = "{sample:s}/"+Selection+"/h{sample:s}_"+Selection+"_purity_CtCv"
purities = RooArgList()
signalshapes = RooArgList()
ctOverCvs = []
mVar = None
ctovercv_vals = None
for sample in samples :
purity = CtCvCpInfo("purity_" + sample)
ctovercv_vals = sorted(purity.AllCtOverCVs.keys())
purity.FillFrom2DHisto( f__.Get( purity_h_name.format( sample=sample ) ) )
purity.GetCtOverCv()
purities.add( purity.CtOverCvDataHistFunc )
objsToKeep.append( purity )
sFile = TFile.Open( samples[sample][0].format( sample=sample ) )
ws = sFile.Get( samples[sample][1] )
pdf = ws.pdf("RV{sample:s}_mh125".format( sample=sample) )
objsToKeep.append(sFile)
objsToKeep.append(ws)
objsToKeep.append(pdf)
signalshapes.add( pdf )
ctOverCvs.append( ws.var( "CtOverCv" ) )
mVar = ws.var("CMS_hgg_mass")
ret = RooAddPdf("signal" , "signal" , signalshapes , purities )
objsToKeep.append( ret )
plot = mVar.frame()
options = ""
for ctovercv in ctovercv_vals :
for var in ctOverCvs:
var.setVal( ctovercv )
name = "name%g" % ctovercv
ret.plotOn( plot , RooFit.DrawOption(options) , RooFit.Name(name) )
c = TCanvas()
plot.Draw()
c.SaveAs("a.gif+")
if not "same" in options :
options += " same"
return c
示例2: main
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
#.........這裏部分代碼省略.........
for i in ids:
# RooFit definitions
## RooRealVars
x = RooRealVar("x","M_{#mu#mu} (GeV)",minM_fit,maxM_fit)
mean = RooRealVar("mean","mean",91.19,87.,94.)
meanCB = RooRealVar("meanCB","meanCB",0.,-10.,10.)
meanCB.setConstant(True)
width = RooRealVar("width","width",2.4952,2.3,2.6)
width.setConstant(True)
sigma = RooRealVar("sigma","sigma",1.3,0.001,3.)
# sigma.setConstant(True)
slope = RooRealVar("slope","slope",-0.1,-1.0,0.)
# slope.setConstant(True)
alpha = RooRealVar("alpha","alpha",1.,0.,30.)
# alpha.setConstant(True)
N = RooRealVar("N","N",2.,0.,100.)
# N.setConstant(True)
fsig = RooRealVar("fsig","fsig",0.9,0.,1.0)
## PDFs
relBW = RooGenericPdf("relBW","relBW","@0/(pow(@0*@[email protected]*@1,2) + @2*@2*@0*@0*@0*@0/(@1*@1))",RooArgList(x,mean,width))
CB = RooCBShape("CB","CB",x,meanCB,sigma,alpha,N)
expo = RooExponential("expo","expo",x,slope)
relBWTimesCB = RooFFTConvPdf("relBWTimesCB","relBWTimesCB",x,relBW,CB)
relBWTimesCBPlusExp = RooAddPdf("relBWTimesCBPlusExp","relBWTimesCBPlusExp",relBWTimesCB,expo,fsig)
# Fit
frame = x.frame()
h = histos[i]
# h.Rebin(10)
h.Sumw2()
nbin = h.GetNbinsX()
dh = RooDataHist("dh","dh",RooArgList(x),h)
dh.plotOn(frame)
relBWTimesCBPlusExp.fitTo(dh)
relBWTimesCBPlusExp.plotOn(frame)
relBWTimesCBPlusExp.paramOn(frame)
# Plot
c = TCanvas("c_"+i,"c_"+i)
c.SetFillColor(0)
c.cd()
frame.Draw()
c.SaveAs(options.outDir+"/DimuonWithFit_"+i+".png")
# Extract the result of the fit
expParams = []
expCoef = slope.getValV()
fSig = fsig.getValV()
binLow = h.GetXaxis().FindBin(minM_fit)
binHigh = h.GetXaxis().FindBin(maxM_fit)
nEntries = h.Integral(binLow,binHigh)
expParams = [expCoef,fSig,nEntries,binLow,binHigh]
expPars[i] = expParams
signalParams = [mean.getVal(),width.getVal(),meanCB.getVal(),sigma.getVal(),alpha.getVal(),N.getVal()]
signalPars[i] = signalParams
# Subtract the bkg from the histograms
h_woBkg = h.Clone()
h_bkg = TH1F("h_bkg_"+i,"Histogram of bkg events",nbin,xlow,xup)
h_bkg.Sumw2()
expNorm = (math.fabs(expCoef)*(1-fSig)*nEntries)/(math.exp(expCoef*minM_fit)-math.exp(expCoef*maxM_fit))
for ibin in range(binLow,binHigh):
w = integrateExp(expNorm,expCoef,h_bkg.GetBinLowEdge(ibin),h_bkg.GetBinLowEdge(ibin+1))
示例3: RooAddPdf
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
signal = RooAddPdf('signal','signal',sig,bkg,fsig)
# -----------------------------------------
# fit signal
canSname = 'can_Mjj'+str(mass)
if useSub:
canSname = 'can_Sub_Mjj'+str(mass)
canS = TCanvas(canSname,canSname,900,600)
#gPad.SetLogy()
roohistSig = RooDataHist('roohist','roohist',RooArgList(x),hSig)
signal.fitTo(roohistSig)
frame = x.frame()
roohistSig.plotOn(frame)
signal.plotOn(frame)
signal.plotOn(frame,RooFit.Components('bkg'),RooFit.LineColor(ROOT.kRed),RooFit.LineWidth(2),RooFit.LineStyle(ROOT.kDashed))
frame.GetXaxis().SetRangeUser(900,4500)
frame.GetXaxis().SetTitle('m_{jj} (GeV)')
frame.Draw()
parsSig = signal.getParameters(roohistSig)
parsSig.setAttribAll('Constant', True)
if fitDat:
# -----------------------------------------
# define parameters for background
NBINS = 180
p1 = RooRealVar('p1','p1',7,1,10)
p2 = RooRealVar('p2','p2',5,1,10)
示例4: dofit
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
def dofit(roodataset, hname):
mass_chib = 10.5103 # from PES uncorrected mass measurement
deltaM = 0.0105 # MeV theoretical expectations
ratio21 = 0.45 # same as chic2/chic1 and chib2/chib1
# the following numbers are from an old 3P gun simulation
# that needs to be re-done
sigma1 = 0.003#0.0031
sigma2 = 0.003#0.0035
alpha1 = 0.95
alpha2 = 1.12
n = 2.5
mass1_v = RooRealVar('mchi1','m_{#chi1}',mass_chib)
deltaM_v = RooRealVar('deltaM','#Delta_{m}',deltaM,0.005,0.015)
mass2_v = RooFormulaVar('mchi2','@[email protected]',RooArgList(mass1_v,deltaM_v))
sigma1_v = RooRealVar('sigma1','#sigma_1',sigma1)
sigma2_v = RooRealVar('sigma2','#sigma_2',sigma2)
alpha1_v = RooRealVar('alpha1','#alpha_1',alpha1)
alpha2_v = RooRealVar('alpha2','#alpha_2',alpha2)
n_v = RooRealVar('n','n',n)
ratio21_v = RooRealVar('ratio21','r_{21}',ratio21)
x = RooRealVar("invm3S","#chi_{b} Data",10.4,10.7)
# choose here binning of mass plot
x.setBins(150)
#signal pdf
chib1 = RooCBShape('chib1','chib1',x,mass1_v,sigma1_v,alpha1_v,n_v)
chib2 = RooCBShape('chib2','chib2',x,mass2_v,sigma2_v,alpha2_v,n_v)
# define background
q01S_Start = 10.4
alpha = RooRealVar("#alpha","#alpha",1.5,0.2,3.5)
beta = RooRealVar("#beta","#beta",-2.5,-7.,0.)
#q0 = RooRealVar("q0","q0",q01S_Start,q01S_Start-0.05,q01S_Start+0.05)
q0 = RooRealVar("q0","q0",q01S_Start)
delta = RooFormulaVar("delta","TMath::Abs(@[email protected])",RooArgList(x,q0))
b1 = RooFormulaVar("b1","@0*(@[email protected])",RooArgList(beta,x,q0))
signum1 = RooFormulaVar( "signum1","( TMath::Sign( -1.,@[email protected] )+1 )/2.", RooArgList(x,q0) )
background = RooGenericPdf("background","Background", "signum1*pow(delta,#alpha)*exp(b1)", RooArgList(signum1,delta,alpha,b1) )
n_evts_1 = RooRealVar('N_{3P_{1}}','N_{3P_{1}}',50,30,1000)
n_evts_2 = RooFormulaVar('N_{3P_{2}}','@0*@1',RooArgList(n_evts_1,ratio21_v))
n_bck = RooRealVar('nbkg','n_{bkg}',500,0,100000)
#build final pdf
modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', RooArgList(chib1,chib2,background),RooArgList(n_evts_1,n_evts_2,n_bck))
# fit
low_cut = x.setRange("low_cut",10.4,10.7)
result = modelPdf.fitTo(roodataset, RooFit.Save(), RooFit.Range("low_cut") )
frame = x.frame(RooFit.Title("m(#chi_{b}(3P))"))
roodataset.plotOn(frame, RooFit.MarkerSize(0.7))
modelPdf.plotOn(frame, RooFit.LineWidth(1))
modelPdf.plotOn(frame, RooFit.LineWidth(2) )
frame.GetXaxis().SetTitle('m_{#gamma #mu^{+} #mu^{-}} - m_{#mu^{+} #mu^{-}} + m^{PDG}_{#Upsilon(3S)} [GeV/c^{2}]' )
#frame.GetYaxis().SetTitle( "Events/15.0 MeV " )
frame.GetXaxis().SetTitleSize(0.04)
frame.GetYaxis().SetTitleSize(0.04)
frame.GetXaxis().SetTitleOffset(1.1)
frame.GetXaxis().SetLabelSize(0.04)
frame.GetYaxis().SetLabelSize(0.04)
frame.SetLineWidth(1)
frame.SetName("fit_resonance")
chi2 = frame.chiSquare()
chi2 = round(chi2,2)
leg=TLegend(0.50,0.7,0.60,0.8)
leg.AddEntry(0,'#chi^{2} ='+str(chi2),'')
leg.SetBorderSize(0)
leg.SetFillColor(0)
leg.SetTextSize(0.06)
gROOT.SetStyle("Plain")
frame.SaveAs(str(hname) + '.root')
#.........這裏部分代碼省略.........
示例5: main
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
#.........這裏部分代碼省略.........
dataInt3 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
background_norm3 = RooRealVar('background_norm3','background_norm3',dataInt3,0.,1e+08)
background4 = RooGenericPdf('background4','(1/pow(@[email protected]*@0/%.1f+pow(@0/%.1f,2),@3))'%(sqrtS,sqrtS),RooArgList(mjj,p8,p9,p10))
dataInt4 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
background_norm4 = RooRealVar('background_norm4','background_norm4',dataInt4,0.,1e+08)
background5 = RooGenericPdf('background5','(pow(@0/%.1f,[email protected])*pow(1-pow(@0/%.1f,1/3),@2))'%(sqrtS,sqrtS),RooArgList(mjj,p11,p12))
dataInt5 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
background_norm5 = RooRealVar('background_norm5','background_norm5',dataInt5,0.,1e+08)
background6 = RooGenericPdf('background6','(pow(@0/%.1f,2)[email protected]*@0/%[email protected])'%(sqrtS,sqrtS),RooArgList(mjj,p13,p14))
dataInt6 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
background_norm6 = RooRealVar('background_norm6','background_norm6',dataInt6,0.,1e+08)
background7 = RooGenericPdf('background7','(([email protected]*@0/%.1f)*pow(@0/%.1f,@[email protected]*log(@0/%.1f)))'%(sqrtS,sqrtS,sqrtS),RooArgList(mjj,p15,p16,p17))
dataInt7 = hData.Integral(hData.GetXaxis().FindBin(float(args.massMin)),hData.GetXaxis().FindBin(float(args.massMax)))
background_norm7 = RooRealVar('background_norm7','background_norm7',dataInt7,0.,1e+08)
# S+B model
model = RooAddPdf("model","s+b",RooArgList(background,signal),RooArgList(background_norm,signal_norm))
model2 = RooAddPdf("model2","s+b2",RooArgList(background2,signal),RooArgList(background_norm2,signal_norm))
model3 = RooAddPdf("model3","s+b3",RooArgList(background3,signal),RooArgList(background_norm3,signal_norm))
model4 = RooAddPdf("model4","s+b4",RooArgList(background4,signal),RooArgList(background_norm4,signal_norm))
model5 = RooAddPdf("model5","s+b5",RooArgList(background5,signal),RooArgList(background_norm5,signal_norm))
model6 = RooAddPdf("model6","s+b6",RooArgList(background6,signal),RooArgList(background_norm6,signal_norm))
model7 = RooAddPdf("model7","s+b7",RooArgList(background7,signal),RooArgList(background_norm7,signal_norm))
rooDataHist = RooDataHist('rooDatahist','rooDathist',RooArgList(mjj),hData)
if args.runFit:
mframe = mjj.frame()
rooDataHist.plotOn(mframe, ROOT.RooFit.Name("setonedata"), ROOT.RooFit.Invisible())
res = model.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
model.plotOn(mframe, ROOT.RooFit.Name("model1"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kRed))
res2 = model2.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
model2.plotOn(mframe, ROOT.RooFit.Name("model2"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kOrange))
res3 = model3.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
model3.plotOn(mframe, ROOT.RooFit.Name("model3"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kGreen))
res4 = model4.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
model4.plotOn(mframe, ROOT.RooFit.Name("model4"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kBlue))
res5 = model5.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
model5.plotOn(mframe, ROOT.RooFit.Name("model5"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kViolet))
res6 = model6.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
# model6.plotOn(mframe, ROOT.RooFit.Name("model6"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kPink))
res7 = model7.fitTo(rooDataHist, RooFit.Save(kTRUE), RooFit.Strategy(args.fitStrategy))
# model7.plotOn(mframe, ROOT.RooFit.Name("model7"), ROOT.RooFit.LineStyle(1), ROOT.RooFit.LineWidth(1), ROOT.RooFit.LineColor(ROOT.EColor.kAzure))
rooDataHist2 = RooDataHist('rooDatahist2','rooDathist2',RooArgList(mjj),hData2)
rooDataHist2.plotOn(mframe, ROOT.RooFit.Name("data"))
canvas = TCanvas("cdouble", "cdouble", 800, 1000)
gStyle.SetOptStat(0);
gStyle.SetOptTitle(0);
top = TPad("top", "top", 0., 0.5, 1., 1.)
top.SetBottomMargin(0.03)
top.Draw()
top.SetLogy()
bottom = TPad("bottom", "bottom", 0., 0., 1., 0.5)
bottom.SetTopMargin(0.02)
bottom.SetBottomMargin(0.2)
bottom.Draw()
top.cd()
示例6:
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
# fit
#pdf_ext_combine5.fitTo(data4, RooFit.Range("whole_range") )
pdf_ext_combine5.fitTo(data4_SB, RooFit.Range("left_side_band_region,right_side_band_region") )
print ""
print "after fit"
print "nGauss14: ", nGauss14.getVal()
print "nGauss15: ", nGauss15.getVal()
print "nGauss14 + nGauss15: ", nGauss14.getVal() + nGauss15.getVal()
print ""
# plot
#gauss12.plotOn(xframe8, RooFit.Normalization( n_generate * frac_combine4.getVal() ,RooAbsReal.NumEvent),RooFit.LineColor(RooFit.kOrange))
#gauss13.plotOn(xframe8, RooFit.Normalization( n_generate*(1-frac_combine4.getVal() ) ,RooAbsReal.NumEvent),RooFit.LineColor(RooFit.kCyan))
pdf_combine4.plotOn(xframe8, RooFit.Normalization(n_generate ,RooAbsReal.NumEvent) ,RooFit.LineColor(RooFit.kBlue))
#data4.plotOn(xframe8)
data4_SB.plotOn(xframe8)
#pdf_ext_combine5.plotOn(xframe8, RooFit.Normalization(nGauss14.getVal() + nGauss15.getVal() ,RooAbsReal.NumEvent) ,RooFit.LineColor(RooFit.kRed))
pdf_ext_combine5.plotOn(xframe8, RooFit.Normalization(data4_SB.sumEntries() ,RooAbsReal.NumEvent) ,RooFit.LineColor(RooFit.kRed))
#pdf_ext_combine5.plotOn(xframe8, RooFit.Normalization(1.0,RooAbsReal.RelativeExpected) ,RooFit.LineColor(RooFit.kRed))
print ""
print "n_generate * frac_combine4.getVal(): ", n_generate * frac_combine4.getVal()
print "n_generate*(1-frac_combine4.getVal() ): ", n_generate*(1-frac_combine4.getVal() )
print "data4_SB: ", data4_SB.sumEntries()
print ""
# -------------------------------------------
示例7: TCanvas
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
RooFit.Normalization(sig_hist.GetEntries()/3,
RooAbsReal.Raw))
fitter = lxgplus
else:
fitter = lxg
fmip.setVal(1.0)
fmip.setConstant(True)
xf.Draw()
# fitter.Print('v')
# raise 'Stop here'
fr = fitter.fitTo(sigDS, RooFit.Minos(False), RooFit.Save(True))
fitter.plotOn(xf)
if (fmip.getVal() < 0.9):
lxgplus.plotOn(xf, RooFit.LineColor(kRed+2),
RooFit.LineStyle(kDashed),
RooFit.Components('ped*'))
lxgplus.plotOn(xf, RooFit.LineColor(myBlue),
RooFit.LineStyle(kDashed),
RooFit.Components('lxg'))
#lxgplus.paramOn(xf)
## c2 = TCanvas('c2', 'signal')
xf.Draw()
c2.Modified()
c2.Update()
## fpar[0] = width.getVal()
## fpar[1] = mpv.getVal()
## fpar[2] = sig_hist.GetEntries()*(1-fped.getVal())
## fpar[3] = sigma.getVal()
示例8: doDataFit
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
#.........這裏部分代碼省略.........
# n_background = RooRealVar('n_background','n_background',4550, 0, 50000)
# ratio_list = RooArgList(n_chib1, n_chib2, n_background)
# modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list)
# Here I have as parameters N_12, ratio_12, N_background
n_chib = RooRealVar("n_chib","n_chib",2075, 0, 100000)
ratio_21 = RooRealVar("ratio_21","ratio_21",0.6, 0, 1)
n_chib1 = RooFormulaVar("n_chib1","@0/([email protected])",RooArgList(n_chib, ratio_21))
n_chib2 = RooFormulaVar("n_chib2","@0/(1+1/@1)",RooArgList(n_chib, ratio_21))
n_background = RooRealVar('n_background','n_background',4550, 0, 50000)
ratio_list = RooArgList(n_chib1, n_chib2, n_background)
parameters.add(RooArgSet(n_chib1, n_chib2, n_background))
modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list)
print 'Fitting to data'
fit_region = x.setRange("fit_region",9.7,10.1)
result=modelPdf.fitTo(data,RooFit.Save(), RooFit.Range("fit_region"))
# define frame
frame = x.frame()
frame.SetNameTitle("fit_resonance","Fit Resonanace")
frame.GetXaxis().SetTitle(x_axis_label )
frame.GetYaxis().SetTitle( "Events/5 MeV " )
frame.GetXaxis().SetTitleSize(0.04)
frame.GetYaxis().SetTitleSize(0.04)
frame.GetXaxis().SetTitleOffset(1.1)
frame.GetXaxis().SetLabelSize(0.04)
frame.GetYaxis().SetLabelSize(0.04)
frame.SetLineWidth(1)
frame.SetTitle(plotTitle)
# plot things on frame
data.plotOn(frame, RooFit.MarkerSize(0.7))
chib1P_set = RooArgSet(chib1_pdf)
modelPdf.plotOn(frame,RooFit.Components(chib1P_set), RooFit.LineColor(ROOT.kGreen+2), RooFit.LineStyle(2), RooFit.LineWidth(1))
chib2P_set = RooArgSet(chib2_pdf)
modelPdf.plotOn(frame, RooFit.Components(chib2P_set),RooFit.LineColor(ROOT.kRed), RooFit.LineStyle(2), RooFit.LineWidth(1))
background_set = RooArgSet(background)
modelPdf.plotOn(frame,RooFit.Components(background_set), RooFit.LineColor(ROOT.kBlack), RooFit.LineStyle(2), RooFit.LineWidth(1))
modelPdf.plotOn(frame, RooFit.LineWidth(2))
frame.SetName("fit_resonance")
# Make numChib object
numChib = NumChib(numChib=n_chib.getVal(), s_numChib=n_chib.getError(), ratio_21=ratio_21.getVal(), s_ratio_21=ratio_21.getError(), numBkg=n_background.getVal(), s_numBkg=n_background.getError(), corr_NB=result.correlation(n_chib, n_background),corr_NR=result.correlation(n_chib, ratio_21) , name='numChib'+output_suffix+ptBin_label,q0=q0.getVal(),s_q0=q0.getError(),alpha=alpha.getVal(),s_alpha=alpha.getError(), beta=beta.getVal(), s_beta=beta.getError(), chiSquare=frame.chiSquare())
#numChib.saveToFile('numChib'+output_suffix+'.txt')
if noPlots:
chi2 = frame.chiSquare()
del frame
return numChib, chi2
# Legend
parameters_on_legend = RooArgSet()#n_chib, ratio_21, n_background)
if massFreeToChange:
#parameters_on_legend.add(scale_mean)
parameters_on_legend.add(mean_1)
#parameters_on_legend.add(mean_2)
if sigmaFreeToChange:
parameters_on_legend.add(scale_sigma)
if massFreeToChange or sigmaFreeToChange:
modelPdf.paramOn(frame, RooFit.Layout(0.1,0.6,0.2),RooFit.Parameters(parameters_on_legend))
if printLegend: #chiquadro, prob, numchib...
leg = TLegend(0.48,0.75,0.97,0.95)
leg.SetBorderSize(0)
示例9: fitChicSpectrum
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
def fitChicSpectrum(dataset,binname):
""" Fit chic spectrum"""
x = RooRealVar('Qvalue','Q',9.7,10.1)
x.setBins(80)
mean_1 = RooRealVar("mean_1","mean ChiB1",9.892,9,10,"GeV")
sigma_1 = RooRealVar("sigma_1","sigma ChiB1",0.0058,'GeV')
a1_1 = RooRealVar('#alpha1_1', '#alpha1_1', 0.748)
n1_1 = RooRealVar('n1_1', 'n1_1',2.8 )
a2_1 = RooRealVar('#alpha2_1', '#alpha2_1',1.739)
n2_1 = RooRealVar('n2_1', 'n2_1', 3.0)
deltam = RooRealVar('deltam','deltam',0.01943)
mean_2 = RooFormulaVar("mean_2","@[email protected]", RooArgList(mean_1,deltam))
sigma_2 = RooRealVar("sigma_2","sigma ChiB2",0.0059,'GeV')
a1_2 = RooRealVar('#alpha1_2', '#alpha1_2', 0.738)
n1_2 = RooRealVar('n1_2', 'n1_2', 2.8)
a2_2 = RooRealVar('#alpha2_2', '#alpha2_2', 1.699)
n2_2 = RooRealVar('n2_2', 'n2_2', 3.0)
parameters=RooArgSet()
parameters.add(RooArgSet(sigma_1, sigma_2))
parameters = RooArgSet(a1_1, a2_1, n1_1, n2_1)
parameters.add(RooArgSet( a1_2, a2_2, n1_2, n2_2))
chib1_pdf = My_double_CB('chib1', 'chib1', x, mean_1, sigma_1, a1_1, n1_1, a2_1, n2_1)
chib2_pdf = My_double_CB('chib2', 'chib2', x, mean_2, sigma_2, a1_2, n1_2, a2_2, n2_2)
#background
q01S_Start = 9.5
alpha = RooRealVar("#alpha","#alpha",1.5,-1,3.5)#0.2 anziche' 1
beta = RooRealVar("#beta","#beta",-2.5,-7.,0.)
q0 = RooRealVar("q0","q0",q01S_Start)#,9.5,9.7)
delta = RooFormulaVar("delta","TMath::Abs(@[email protected])",RooArgList(x,q0))
b1 = RooFormulaVar("b1","@0*(@[email protected])",RooArgList(beta,x,q0))
signum1 = RooFormulaVar( "signum1","( TMath::Sign( -1.,@[email protected] )+1 )/2.", RooArgList(x,q0) )
background = RooGenericPdf("background","Background", "signum1*pow(delta,#alpha)*exp(b1)", RooArgList(signum1,delta,alpha,b1) )
parameters.add(RooArgSet(alpha, beta, q0))
#together
chibs = RooArgList(chib1_pdf,chib2_pdf,background)
n_chib = RooRealVar("n_chib","n_chib",2075, 0, 100000)
ratio_21 = RooRealVar("ratio_21","ratio_21",0.5,0,1)
n_chib1 = RooFormulaVar("n_chib1","@0/([email protected])",RooArgList(n_chib, ratio_21))
n_chib2 = RooFormulaVar("n_chib2","@0/(1+1/@1)",RooArgList(n_chib, ratio_21))
n_background = RooRealVar('n_background','n_background',4550, 0, 50000)
ratio_list = RooArgList(n_chib1, n_chib2, n_background)
modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list)
frame = x.frame(RooFit.Title('m'))
range = x.setRange('range',9.7,10.1)
result = modelPdf.fitTo(dataset,RooFit.Save(),RooFit.Range('range'))
dataset.plotOn(frame,RooFit.MarkerSize(0.7))
modelPdf.plotOn(frame, RooFit.LineWidth(2) )
#plotting
canvas = TCanvas('fit', "", 1400, 700 )
canvas.Divide(1)
canvas.cd(1)
gPad.SetRightMargin(0.3)
gPad.SetFillColor(10)
modelPdf.paramOn(frame, RooFit.Layout(0.725,0.9875,0.9))
frame.Draw()
canvas.SaveAs( 'out-'+binname + '.png' )
示例10: fit_gau2_che
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
def fit_gau2_che(var, dataset, title='', print_pars=False, test=False,
mean_=None, sigma_=None, sigma1_=None, sigmaFraction_=None):
# define background
c0 = RooRealVar('c0', 'constant', 0.1, -1, 1)
c1 = RooRealVar('c1', 'linear', 0.6, -1, 1)
c2 = RooRealVar('c2', 'quadratic', 0.1, -1, 1)
c3 = RooRealVar('c3', 'c3', 0.1, -1, 1)
bkg = RooChebychev('bkg', 'background pdf', var,
RooArgList(c0, c1, c2, c3))
# define signal
val = 5.28
dmean = 0.05
valL = val - dmean
valR = val + dmean
if mean_ is None:
mean = RooRealVar("mean", "mean", val, valL, valR)
else:
mean = RooRealVar("mean", "mean", mean_)
val = 0.05
dmean = 0.02
valL = val - dmean
valR = val + dmean
if sigma_ is None:
sigma = RooRealVar('sigma', 'sigma', val, valL, valR)
else:
sigma = RooRealVar('sigma', 'sigma', sigma_)
if sigma1_ is None:
sigma1 = RooRealVar('sigma1', 'sigma1', val, valL, valR)
else:
sigma1 = RooRealVar('sigma1', 'sigma1', sigma1_)
peakGaus = RooGaussian("peakGaus", "peakGaus", var, mean, sigma)
peakGaus1 = RooGaussian("peakGaus1", "peakGaus1", var, mean, sigma1)
if sigmaFraction_ is None:
sigmaFraction = RooRealVar("sigmaFraction", "Sigma Fraction", 0.5, 0., 1.)
else:
sigmaFraction = RooRealVar("sigmaFraction", "Sigma Fraction", sigmaFraction_)
glist = RooArgList(peakGaus, peakGaus1)
peakG = RooAddPdf("peakG","peakG", glist, RooArgList(sigmaFraction))
listPeak = RooArgList("listPeak")
listPeak.add(peakG)
listPeak.add(bkg)
fbkg = 0.45
nEntries = dataset.numEntries()
val=(1-fbkg)* nEntries
listArea = RooArgList("listArea")
areaPeak = RooRealVar("areaPeak", "areaPeak", val, 0.,nEntries)
listArea.add(areaPeak)
nBkg = fbkg*nEntries
areaBkg = RooRealVar("areaBkg","areaBkg", nBkg, 0.,nEntries)
listArea.add(areaBkg)
model = RooAddPdf("model", "fit model", listPeak, listArea)
if not test:
fitres = model.fitTo(dataset, RooFit.Extended(kTRUE),
RooFit.Minos(kTRUE),RooFit.Save(kTRUE))
nbins = 35
frame = var.frame(nbins)
frame.GetXaxis().SetTitle("B^{0} mass (GeV/c^{2})")
frame.GetXaxis().CenterTitle()
frame.GetYaxis().CenterTitle()
frame.SetTitle(title)
mk_size = RooFit.MarkerSize(0.3)
mk_style = RooFit.MarkerStyle(kFullCircle)
dataset.plotOn(frame, mk_size, mk_style)
model.plotOn(frame)
as_bkg = RooArgSet(bkg)
cp_bkg = RooFit.Components(as_bkg)
line_style = RooFit.LineStyle(kDashed)
model.plotOn(frame, cp_bkg, line_style)
if print_pars:
fmt = RooFit.Format('NEU')
lyt = RooFit.Layout(0.65, 0.95, 0.92)
param = model.paramOn(frame, fmt, lyt)
param.getAttText().SetTextSize(0.02)
param.getAttText().SetTextFont(60)
frame.Draw()
#.........這裏部分代碼省略.........
示例11:
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
print numEvts
# In[10]:
tot.fitTo(dh)
# In[11]:
massFrame = mass.frame()
massFrame.SetTitle("Phi signal")
dh.plotOn(massFrame)
tot.plotOn(massFrame)
gauss.plotOn(massFrame,LineColor(kGreen),LineStyle(kDashed),Normalization((sFrac.getValV()*numEvts)/(numEvts)))
cheb.plotOn(massFrame,LineColor(kMagenta),LineStyle(kDotted),Normalization(((1.0-sFrac.getValV())*numEvts)/(numEvts)))
tot.paramOn(massFrame,Layout(0.60,0.99,0.75));
massFrame.Draw()
# In[12]:
plotmax = hist.GetMaximum()*1.05
sidesigma = sigma.getValV()
leftlowside = -7.*sidesigma + mean.getValV()
leftupside = -5.*sidesigma + mean.getValV()
rightlowside = +5.*sidesigma + mean.getValV()
rightupside = +7.*sidesigma + mean.getValV()
示例12: RooRealVar
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
from ROOT import RooAddPdf
phiFrac = RooRealVar( 'phiFrac', 'phiFrac', 0.96, 0., 1. )
phiFrac.setError(0.003)
KKMassPdf = RooAddPdf( 'KKMassPdf', 'KKMassPdf', phiMassPdf, KKSWavePdf, phiFrac )
#Fit
fitResult = KKMassPdf.fitTo( sigData, SumW2Error = False, Save = True, Minos = False, **fitOpts )
fitResult.PrintSpecial( text = True )
#Plot
KKMassPlot = KKMassVar.frame(120)
if drawTotalDists :
data.plotOn( KKMassPlot, MarkerStyle = kFullCircle, MarkerSize = 0.5, MarkerColor = kRed, LineWidth = 2, LineColor = kRed )
sigData.plotOn( KKMassPlot, MarkerStyle = kFullCircle, MarkerSize = 0.5, LineWidth = 2 )
KKMassPdf.plotOn( KKMassPlot, LineStyle = kSolid, LineWidth = 3, LineColor = kBlue )
#KKMassPdf.plotOn( KKMassPlot, LineStyle = 7, LineWidth = 3, LineColor = kRed, Components = 'phiMassPdf' )
#KKMassPdf.plotOn( KKMassPlot, LineStyle = 5, LineWidth = 3, LineColor = kMagenta + 3, Components = 'KKSWavePdf' )
binWidth = ( KKMassPlot.GetXaxis().GetXmax() - KKMassPlot.GetXaxis().GetXmin() ) / float( KKMassPlot.GetNbinsX() )
KKMassPlot.SetXTitle('m(K^{+}K^{-}) [MeV/c^{2}]')
KKMassPlot.SetYTitle('Candidates / (%.2g MeV/c^{2})' % binWidth )
KKMassPlot.SetMinimum(0.)
KKMassPlot.SetMaximum( 6200. if not drawTotalDists else 7000. )
KKMassPlot.SetTitleOffset( 1.10, 'x' )
KKMassPlot.SetTitleOffset( 1.15, 'y' )
KKMassPlot.SetMinimum(0.)
KKMassCanv = TCanvas('KKMassCanv')
KKMassCanv.SetLeftMargin(0.18)
示例13: RooRealVar
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
# --- Construct signal+background PDF ---
nsig = RooRealVar("nsig", "#signal events", 200, 0., 10000)
nbkg = RooRealVar("nbkg", "#background events", 800, 0., 10000)
model = RooAddPdf("model", "g+a", RooArgList(signal, background), RooArgList(nsig, nbkg))
# --- Generate a toyMC sample from composite PDF ---
data = model.generate(RooArgSet(mes), 2000)
# --- Perform extended ML fit of composite PDF to toy data ---
model.fitTo(data)
# --- Plot toy data and composite PDF overlaid ---
mesframe = mes.frame()
data.plotOn(mesframe)
model.plotOn(mesframe)
model.plotOn(mesframe, RooFit.Components('background'), RooFit.LineStyle(kDashed))
mesframe.Draw()
print 'nsig:',nsig.getValV(), '+-', nsig.getError()
print 'nbkg:', nbkg.getValV(), '+-', nbkg.getError()
print 'mes:', mes.getValV(), '+-', mes.getError()
print 'mean:', sigmean.getValV(), '+-', sigmean.getError()
print 'width:', sigwidth.getValV(), '+-', sigwidth.getError()
print 'argpar:', argpar.getValV(), '+-', argpar.getError()
from time import sleep
sleep(10)
示例14: RooAddPdf
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
rrv_number_Total_background_MC.setError(TMath.Sqrt(
rrv_number_WJets.getError()* rrv_number_WJets.getError()+
rrv_number_VV.getError()* rrv_number_VV.getError()+
rrv_number_TTbar.getError()* rrv_number_TTbar.getError()+
rrv_number_STop.getError() *rrv_number_STop.getError()
));
model_Total_background_MC = RooAddPdf("model_Total_background_MC_xww","model_Total_background_MC_xww",RooArgList(old_workspace.pdf("WJets_xww_%s_%s"%(options.channel,options.category)), old_workspace.pdf("VV_xww_%s_%s"%(options.channel,options.category)),old_workspace.pdf("TTbar_xww_%s_%s"%(options.channel,options.category)),old_workspace.pdf("STop_xww_%s_%s"%(options.channel,options.category))),RooArgList(rrv_number_WJets,rrv_number_VV,rrv_number_TTbar,rrv_number_STop));
rrv_number_signal.setVal(rrv_number_signal.getVal()*6.25);
#### scale factor in order to scale MC to data in the final plot -> in order to avoid the normalization to data which is done by default in rooFit
scale_number_Total_background_MC = rrv_number_Total_background_MC.getVal()/old_workspace.data(datasetname+"_xww_"+options.channel+"_"+options.category).sumEntries();
scale_number_signal = rrv_number_signal.getVal()/old_workspace.data(datasetname+"_xww_"+options.channel+"_"+options.category).sumEntries();
model_Total_background_MC.plotOn(mplot,RooFit.Normalization(scale_number_Total_background_MC),RooFit.Name("total_MC"),RooFit.Components("WJets_xww_%s_%s,VV_xww_%s_%s,TTbar_xww_%s_%s,STop_xww_%s_%s"%(options.channel,options.category,options.channel,options.category,options.channel,options.category,options.channel,options.category)),RooFit.DrawOption("L"), RooFit.LineColor(kRed), RooFit.VLines(),RooFit.LineWidth(2));
model_signal_background_MC = RooAddPdf("model_signal_background_MC_xww","model_signal_background_MC_xww",RooArgList(model_pdf,model_Total_background_MC),RooArgList(rrv_number_signal,rrv_number_Total_background_MC));
model_signal_background_MC.plotOn(mplot,RooFit.Normalization(scale_number_Total_background_MC+scale_number_signal),RooFit.Name("total_SpB_MC"),RooFit.Components("BulkWW_xww_%s_%s,model_Total_background_MC_xww"%(options.channel,options.category)),RooFit.DrawOption("L"), RooFit.LineColor(kBlue), RooFit.VLines(),RooFit.LineWidth(2),RooFit.LineStyle(7));
model_pdf.plotOn(mplot,RooFit.Name("total_S_MC"),RooFit.Normalization(scale_number_signal),RooFit.DrawOption("L"), RooFit.LineColor(kGreen+2), RooFit.VLines(),RooFit.LineWidth(2),RooFit.LineStyle(kDashed));
os.system("mkdir -p ./plots_signal_width");
name = TString("check_%.3f_%.3f"%(mass[iMass],gammaVal));
name.ReplaceAll("0.","0_");
mplot.GetYaxis().SetRangeUser(1e-3,mplot.GetMaximum()*1.2);
draw_canvas(mplot,"plots_signal_width/",name,0,1);
new_workspace.writeToFile(new_file.GetName());
示例15: RooGaussian
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import plotOn [as 別名]
gauss5 = RooGaussian("gauss5","gaussian PDF",x,mean5,sigma5)
# add PDF gauss_combine1 = gauss4 + gauss5
frac_combine1 = RooRealVar("frac_combine1", "fraction of gauss4 wrt gauss5", 0.7, 0., 1.)
pdf_combine1 = RooAddPdf("pdf_combine1"," gauss4 + gauss5 ", RooArgList(gauss4 , gauss5 ), RooArgList( frac_combine1 ))
#pdf_combine1.plotOn(xframe3,RooFit.LineColor(RooFit.kBlue))
gauss4.plotOn(xframe3, RooFit.Normalization( frac_combine1.getVal() ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kOrange))
gauss5.plotOn(xframe3, RooFit.Normalization( 1-frac_combine1.getVal() ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kCyan))
pdf_combine1.plotOn(xframe3, RooFit.Normalization(1.0,RooAbsReal.Relative) ,RooFit.LineColor(RooFit.kBlue))
# -------------------------------------------
# 4. use combine PDF to generate MC
xframe4 = x.frame(RooFit.Title("4. use combine PDF to generate MC"))
data2 = pdf_combine1.generate(RooArgSet(x),500)
#pdf_combine1.plotOn(xframe4, RooFit.Normalization(500, RooAbsReal.NumEvent) , RooFit.LineColor(RooFit.kOrange))
data2.plotOn(xframe4)
pdf_combine1.plotOn(xframe4,RooFit.LineColor(RooFit.kBlue))
# -------------------------------------------
# 5. use combine PDF to fit the toy MC