本文整理匯總了Python中ROOT.RooAddPdf.paramOn方法的典型用法代碼示例。如果您正苦於以下問題:Python RooAddPdf.paramOn方法的具體用法?Python RooAddPdf.paramOn怎麽用?Python RooAddPdf.paramOn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ROOT.RooAddPdf
的用法示例。
在下文中一共展示了RooAddPdf.paramOn方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import paramOn [as 別名]
#.........這裏部分代碼省略.........
x = RooRealVar("x","M_{#mu#mu} (GeV)",minM_fit,maxM_fit)
mean = RooRealVar("mean","mean",91.19,87.,94.)
meanCB = RooRealVar("meanCB","meanCB",0.,-10.,10.)
meanCB.setConstant(True)
width = RooRealVar("width","width",2.4952,2.3,2.6)
width.setConstant(True)
sigma = RooRealVar("sigma","sigma",1.3,0.001,3.)
# sigma.setConstant(True)
slope = RooRealVar("slope","slope",-0.1,-1.0,0.)
# slope.setConstant(True)
alpha = RooRealVar("alpha","alpha",1.,0.,30.)
# alpha.setConstant(True)
N = RooRealVar("N","N",2.,0.,100.)
# N.setConstant(True)
fsig = RooRealVar("fsig","fsig",0.9,0.,1.0)
## PDFs
relBW = RooGenericPdf("relBW","relBW","@0/(pow(@0*@[email protected]*@1,2) + @2*@2*@0*@0*@0*@0/(@1*@1))",RooArgList(x,mean,width))
CB = RooCBShape("CB","CB",x,meanCB,sigma,alpha,N)
expo = RooExponential("expo","expo",x,slope)
relBWTimesCB = RooFFTConvPdf("relBWTimesCB","relBWTimesCB",x,relBW,CB)
relBWTimesCBPlusExp = RooAddPdf("relBWTimesCBPlusExp","relBWTimesCBPlusExp",relBWTimesCB,expo,fsig)
# Fit
frame = x.frame()
h = histos[i]
# h.Rebin(10)
h.Sumw2()
nbin = h.GetNbinsX()
dh = RooDataHist("dh","dh",RooArgList(x),h)
dh.plotOn(frame)
relBWTimesCBPlusExp.fitTo(dh)
relBWTimesCBPlusExp.plotOn(frame)
relBWTimesCBPlusExp.paramOn(frame)
# Plot
c = TCanvas("c_"+i,"c_"+i)
c.SetFillColor(0)
c.cd()
frame.Draw()
c.SaveAs(options.outDir+"/DimuonWithFit_"+i+".png")
# Extract the result of the fit
expParams = []
expCoef = slope.getValV()
fSig = fsig.getValV()
binLow = h.GetXaxis().FindBin(minM_fit)
binHigh = h.GetXaxis().FindBin(maxM_fit)
nEntries = h.Integral(binLow,binHigh)
expParams = [expCoef,fSig,nEntries,binLow,binHigh]
expPars[i] = expParams
signalParams = [mean.getVal(),width.getVal(),meanCB.getVal(),sigma.getVal(),alpha.getVal(),N.getVal()]
signalPars[i] = signalParams
# Subtract the bkg from the histograms
h_woBkg = h.Clone()
h_bkg = TH1F("h_bkg_"+i,"Histogram of bkg events",nbin,xlow,xup)
h_bkg.Sumw2()
expNorm = (math.fabs(expCoef)*(1-fSig)*nEntries)/(math.exp(expCoef*minM_fit)-math.exp(expCoef*maxM_fit))
for ibin in range(binLow,binHigh):
w = integrateExp(expNorm,expCoef,h_bkg.GetBinLowEdge(ibin),h_bkg.GetBinLowEdge(ibin+1))
h_bkg.SetBinContent(ibin,w)
h_woBkg.Add(h_bkg,-1)
示例2: doDataFit
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import paramOn [as 別名]
#.........這裏部分代碼省略.........
frame.GetYaxis().SetLabelSize(0.04)
frame.SetLineWidth(1)
frame.SetTitle(plotTitle)
# plot things on frame
data.plotOn(frame, RooFit.MarkerSize(0.7))
chib1P_set = RooArgSet(chib1_pdf)
modelPdf.plotOn(frame,RooFit.Components(chib1P_set), RooFit.LineColor(ROOT.kGreen+2), RooFit.LineStyle(2), RooFit.LineWidth(1))
chib2P_set = RooArgSet(chib2_pdf)
modelPdf.plotOn(frame, RooFit.Components(chib2P_set),RooFit.LineColor(ROOT.kRed), RooFit.LineStyle(2), RooFit.LineWidth(1))
background_set = RooArgSet(background)
modelPdf.plotOn(frame,RooFit.Components(background_set), RooFit.LineColor(ROOT.kBlack), RooFit.LineStyle(2), RooFit.LineWidth(1))
modelPdf.plotOn(frame, RooFit.LineWidth(2))
frame.SetName("fit_resonance")
# Make numChib object
numChib = NumChib(numChib=n_chib.getVal(), s_numChib=n_chib.getError(), ratio_21=ratio_21.getVal(), s_ratio_21=ratio_21.getError(), numBkg=n_background.getVal(), s_numBkg=n_background.getError(), corr_NB=result.correlation(n_chib, n_background),corr_NR=result.correlation(n_chib, ratio_21) , name='numChib'+output_suffix+ptBin_label,q0=q0.getVal(),s_q0=q0.getError(),alpha=alpha.getVal(),s_alpha=alpha.getError(), beta=beta.getVal(), s_beta=beta.getError(), chiSquare=frame.chiSquare())
#numChib.saveToFile('numChib'+output_suffix+'.txt')
if noPlots:
chi2 = frame.chiSquare()
del frame
return numChib, chi2
# Legend
parameters_on_legend = RooArgSet()#n_chib, ratio_21, n_background)
if massFreeToChange:
#parameters_on_legend.add(scale_mean)
parameters_on_legend.add(mean_1)
#parameters_on_legend.add(mean_2)
if sigmaFreeToChange:
parameters_on_legend.add(scale_sigma)
if massFreeToChange or sigmaFreeToChange:
modelPdf.paramOn(frame, RooFit.Layout(0.1,0.6,0.2),RooFit.Parameters(parameters_on_legend))
if printLegend: #chiquadro, prob, numchib...
leg = TLegend(0.48,0.75,0.97,0.95)
leg.SetBorderSize(0)
#leg.SetTextSize(0.04)
leg.SetFillStyle(0)
chi2 = frame.chiSquare()
probChi2 = TMath.Prob(chi2*ndof, ndof)
chi2 = round(chi2,2)
probChi2 = round(probChi2,2)
leg.AddEntry(0,'#chi^{2} = '+str(chi2),'')
leg.AddEntry(0,'Prob #chi^{2} = '+str(probChi2),'')
N_bkg, s_N_bkg = roundPair(numChib.numBkg, numChib.s_numBkg)
leg.AddEntry(0,'N_{bkg} = '+str(N_bkg)+' #pm '+str(s_N_bkg),'')
N_chib12, s_N_chib12 = roundPair(numChib.numChib, numChib.s_numChib)
leg.AddEntry(0,'N_{#chi_{b}} = '+str(N_chib12)+' #pm '+str(s_N_chib12),'')
Ratio = numChib.calcRatio()
s_Ratio = numChib.calcRatioError()
Ratio, s_Ratio = roundPair(Ratio, s_Ratio)
leg.AddEntry(0,'N_{2}/N_{1} = '+str(Ratio)+' #pm '+str(s_Ratio),'')
if printSigReso: # Add Significance
Sig = numChib.calcSignificance()
s_Sig = numChib.calcSignificanceError()
Sig, s_Sig = roundPair(Sig, s_Sig)
leg.AddEntry(0,'Sig = '+str(Sig)+' #pm '+str(s_Sig),'')
if(Chib1_parameters.sigma>Chib2_parameters.sigma):
Reso = Chib1_parameters.sigma * 1000 # So it's in MeV and not in GeV
s_Reso = Chib1_parameters.s_sigma * 1000 # So it's in MeV and not in GeV
else:
Reso = Chib2_parameters.sigma * 1000 # So it's in MeV and not in GeV
s_Reso = Chib2_parameters.s_sigma * 1000 # So it's in MeV and not in GeV
示例3: dofit
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import paramOn [as 別名]
#.........這裏部分代碼省略.........
alpha1 = 0.95
alpha2 = 1.12
n = 2.5
mass1_v = RooRealVar('mchi1','m_{#chi1}',mass_chib)
deltaM_v = RooRealVar('deltaM','#Delta_{m}',deltaM,0.005,0.015)
mass2_v = RooFormulaVar('mchi2','@[email protected]',RooArgList(mass1_v,deltaM_v))
sigma1_v = RooRealVar('sigma1','#sigma_1',sigma1)
sigma2_v = RooRealVar('sigma2','#sigma_2',sigma2)
alpha1_v = RooRealVar('alpha1','#alpha_1',alpha1)
alpha2_v = RooRealVar('alpha2','#alpha_2',alpha2)
n_v = RooRealVar('n','n',n)
ratio21_v = RooRealVar('ratio21','r_{21}',ratio21)
x = RooRealVar("invm3S","#chi_{b} Data",10.4,10.7)
# choose here binning of mass plot
x.setBins(150)
#signal pdf
chib1 = RooCBShape('chib1','chib1',x,mass1_v,sigma1_v,alpha1_v,n_v)
chib2 = RooCBShape('chib2','chib2',x,mass2_v,sigma2_v,alpha2_v,n_v)
# define background
q01S_Start = 10.4
alpha = RooRealVar("#alpha","#alpha",1.5,0.2,3.5)
beta = RooRealVar("#beta","#beta",-2.5,-7.,0.)
#q0 = RooRealVar("q0","q0",q01S_Start,q01S_Start-0.05,q01S_Start+0.05)
q0 = RooRealVar("q0","q0",q01S_Start)
delta = RooFormulaVar("delta","TMath::Abs(@[email protected])",RooArgList(x,q0))
b1 = RooFormulaVar("b1","@0*(@[email protected])",RooArgList(beta,x,q0))
signum1 = RooFormulaVar( "signum1","( TMath::Sign( -1.,@[email protected] )+1 )/2.", RooArgList(x,q0) )
background = RooGenericPdf("background","Background", "signum1*pow(delta,#alpha)*exp(b1)", RooArgList(signum1,delta,alpha,b1) )
n_evts_1 = RooRealVar('N_{3P_{1}}','N_{3P_{1}}',50,30,1000)
n_evts_2 = RooFormulaVar('N_{3P_{2}}','@0*@1',RooArgList(n_evts_1,ratio21_v))
n_bck = RooRealVar('nbkg','n_{bkg}',500,0,100000)
#build final pdf
modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', RooArgList(chib1,chib2,background),RooArgList(n_evts_1,n_evts_2,n_bck))
# fit
low_cut = x.setRange("low_cut",10.4,10.7)
result = modelPdf.fitTo(roodataset, RooFit.Save(), RooFit.Range("low_cut") )
frame = x.frame(RooFit.Title("m(#chi_{b}(3P))"))
roodataset.plotOn(frame, RooFit.MarkerSize(0.7))
modelPdf.plotOn(frame, RooFit.LineWidth(1))
modelPdf.plotOn(frame, RooFit.LineWidth(2) )
frame.GetXaxis().SetTitle('m_{#gamma #mu^{+} #mu^{-}} - m_{#mu^{+} #mu^{-}} + m^{PDG}_{#Upsilon(3S)} [GeV/c^{2}]' )
#frame.GetYaxis().SetTitle( "Events/15.0 MeV " )
frame.GetXaxis().SetTitleSize(0.04)
frame.GetYaxis().SetTitleSize(0.04)
frame.GetXaxis().SetTitleOffset(1.1)
frame.GetXaxis().SetLabelSize(0.04)
frame.GetYaxis().SetLabelSize(0.04)
frame.SetLineWidth(1)
frame.SetName("fit_resonance")
chi2 = frame.chiSquare()
chi2 = round(chi2,2)
leg=TLegend(0.50,0.7,0.60,0.8)
leg.AddEntry(0,'#chi^{2} ='+str(chi2),'')
leg.SetBorderSize(0)
leg.SetFillColor(0)
leg.SetTextSize(0.06)
gROOT.SetStyle("Plain")
frame.SaveAs(str(hname) + '.root')
# param_set = RooArgSet(n_evts_Roo4, m_chib[1][3],alpha, beta, q0)
canvas = TCanvas('fit', "", 1400, 700 )
canvas.Divide(1)
canvas.cd(1)
gPad.SetRightMargin(0.3)
gPad.SetFillColor(10)
# modelPdf.paramOn(frame, RooFit.Layout(0.725,0.9875,0.9), RooFit.Parameters(param_set))
modelPdf.paramOn(frame, RooFit.Layout(0.725,0.9875,0.9))
frame.Draw()
leg.Draw("same")
canvas.SaveAs( str(hname) + '.png' )
示例4: fitChicSpectrum
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import paramOn [as 別名]
def fitChicSpectrum(dataset,binname):
""" Fit chic spectrum"""
x = RooRealVar('Qvalue','Q',9.7,10.1)
x.setBins(80)
mean_1 = RooRealVar("mean_1","mean ChiB1",9.892,9,10,"GeV")
sigma_1 = RooRealVar("sigma_1","sigma ChiB1",0.0058,'GeV')
a1_1 = RooRealVar('#alpha1_1', '#alpha1_1', 0.748)
n1_1 = RooRealVar('n1_1', 'n1_1',2.8 )
a2_1 = RooRealVar('#alpha2_1', '#alpha2_1',1.739)
n2_1 = RooRealVar('n2_1', 'n2_1', 3.0)
deltam = RooRealVar('deltam','deltam',0.01943)
mean_2 = RooFormulaVar("mean_2","@[email protected]", RooArgList(mean_1,deltam))
sigma_2 = RooRealVar("sigma_2","sigma ChiB2",0.0059,'GeV')
a1_2 = RooRealVar('#alpha1_2', '#alpha1_2', 0.738)
n1_2 = RooRealVar('n1_2', 'n1_2', 2.8)
a2_2 = RooRealVar('#alpha2_2', '#alpha2_2', 1.699)
n2_2 = RooRealVar('n2_2', 'n2_2', 3.0)
parameters=RooArgSet()
parameters.add(RooArgSet(sigma_1, sigma_2))
parameters = RooArgSet(a1_1, a2_1, n1_1, n2_1)
parameters.add(RooArgSet( a1_2, a2_2, n1_2, n2_2))
chib1_pdf = My_double_CB('chib1', 'chib1', x, mean_1, sigma_1, a1_1, n1_1, a2_1, n2_1)
chib2_pdf = My_double_CB('chib2', 'chib2', x, mean_2, sigma_2, a1_2, n1_2, a2_2, n2_2)
#background
q01S_Start = 9.5
alpha = RooRealVar("#alpha","#alpha",1.5,-1,3.5)#0.2 anziche' 1
beta = RooRealVar("#beta","#beta",-2.5,-7.,0.)
q0 = RooRealVar("q0","q0",q01S_Start)#,9.5,9.7)
delta = RooFormulaVar("delta","TMath::Abs(@[email protected])",RooArgList(x,q0))
b1 = RooFormulaVar("b1","@0*(@[email protected])",RooArgList(beta,x,q0))
signum1 = RooFormulaVar( "signum1","( TMath::Sign( -1.,@[email protected] )+1 )/2.", RooArgList(x,q0) )
background = RooGenericPdf("background","Background", "signum1*pow(delta,#alpha)*exp(b1)", RooArgList(signum1,delta,alpha,b1) )
parameters.add(RooArgSet(alpha, beta, q0))
#together
chibs = RooArgList(chib1_pdf,chib2_pdf,background)
n_chib = RooRealVar("n_chib","n_chib",2075, 0, 100000)
ratio_21 = RooRealVar("ratio_21","ratio_21",0.5,0,1)
n_chib1 = RooFormulaVar("n_chib1","@0/([email protected])",RooArgList(n_chib, ratio_21))
n_chib2 = RooFormulaVar("n_chib2","@0/(1+1/@1)",RooArgList(n_chib, ratio_21))
n_background = RooRealVar('n_background','n_background',4550, 0, 50000)
ratio_list = RooArgList(n_chib1, n_chib2, n_background)
modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list)
frame = x.frame(RooFit.Title('m'))
range = x.setRange('range',9.7,10.1)
result = modelPdf.fitTo(dataset,RooFit.Save(),RooFit.Range('range'))
dataset.plotOn(frame,RooFit.MarkerSize(0.7))
modelPdf.plotOn(frame, RooFit.LineWidth(2) )
#plotting
canvas = TCanvas('fit', "", 1400, 700 )
canvas.Divide(1)
canvas.cd(1)
gPad.SetRightMargin(0.3)
gPad.SetFillColor(10)
modelPdf.paramOn(frame, RooFit.Layout(0.725,0.9875,0.9))
frame.Draw()
canvas.SaveAs( 'out-'+binname + '.png' )
示例5: fit_gau2_che
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import paramOn [as 別名]
def fit_gau2_che(var, dataset, title='', print_pars=False, test=False,
mean_=None, sigma_=None, sigma1_=None, sigmaFraction_=None):
# define background
c0 = RooRealVar('c0', 'constant', 0.1, -1, 1)
c1 = RooRealVar('c1', 'linear', 0.6, -1, 1)
c2 = RooRealVar('c2', 'quadratic', 0.1, -1, 1)
c3 = RooRealVar('c3', 'c3', 0.1, -1, 1)
bkg = RooChebychev('bkg', 'background pdf', var,
RooArgList(c0, c1, c2, c3))
# define signal
val = 5.28
dmean = 0.05
valL = val - dmean
valR = val + dmean
if mean_ is None:
mean = RooRealVar("mean", "mean", val, valL, valR)
else:
mean = RooRealVar("mean", "mean", mean_)
val = 0.05
dmean = 0.02
valL = val - dmean
valR = val + dmean
if sigma_ is None:
sigma = RooRealVar('sigma', 'sigma', val, valL, valR)
else:
sigma = RooRealVar('sigma', 'sigma', sigma_)
if sigma1_ is None:
sigma1 = RooRealVar('sigma1', 'sigma1', val, valL, valR)
else:
sigma1 = RooRealVar('sigma1', 'sigma1', sigma1_)
peakGaus = RooGaussian("peakGaus", "peakGaus", var, mean, sigma)
peakGaus1 = RooGaussian("peakGaus1", "peakGaus1", var, mean, sigma1)
if sigmaFraction_ is None:
sigmaFraction = RooRealVar("sigmaFraction", "Sigma Fraction", 0.5, 0., 1.)
else:
sigmaFraction = RooRealVar("sigmaFraction", "Sigma Fraction", sigmaFraction_)
glist = RooArgList(peakGaus, peakGaus1)
peakG = RooAddPdf("peakG","peakG", glist, RooArgList(sigmaFraction))
listPeak = RooArgList("listPeak")
listPeak.add(peakG)
listPeak.add(bkg)
fbkg = 0.45
nEntries = dataset.numEntries()
val=(1-fbkg)* nEntries
listArea = RooArgList("listArea")
areaPeak = RooRealVar("areaPeak", "areaPeak", val, 0.,nEntries)
listArea.add(areaPeak)
nBkg = fbkg*nEntries
areaBkg = RooRealVar("areaBkg","areaBkg", nBkg, 0.,nEntries)
listArea.add(areaBkg)
model = RooAddPdf("model", "fit model", listPeak, listArea)
if not test:
fitres = model.fitTo(dataset, RooFit.Extended(kTRUE),
RooFit.Minos(kTRUE),RooFit.Save(kTRUE))
nbins = 35
frame = var.frame(nbins)
frame.GetXaxis().SetTitle("B^{0} mass (GeV/c^{2})")
frame.GetXaxis().CenterTitle()
frame.GetYaxis().CenterTitle()
frame.SetTitle(title)
mk_size = RooFit.MarkerSize(0.3)
mk_style = RooFit.MarkerStyle(kFullCircle)
dataset.plotOn(frame, mk_size, mk_style)
model.plotOn(frame)
as_bkg = RooArgSet(bkg)
cp_bkg = RooFit.Components(as_bkg)
line_style = RooFit.LineStyle(kDashed)
model.plotOn(frame, cp_bkg, line_style)
if print_pars:
fmt = RooFit.Format('NEU')
lyt = RooFit.Layout(0.65, 0.95, 0.92)
param = model.paramOn(frame, fmt, lyt)
param.getAttText().SetTextSize(0.02)
param.getAttText().SetTextFont(60)
frame.Draw()
#.........這裏部分代碼省略.........
示例6:
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import paramOn [as 別名]
# In[10]:
tot.fitTo(dh)
# In[11]:
massFrame = mass.frame()
massFrame.SetTitle("Phi signal")
dh.plotOn(massFrame)
tot.plotOn(massFrame)
gauss.plotOn(massFrame,LineColor(kGreen),LineStyle(kDashed),Normalization((sFrac.getValV()*numEvts)/(numEvts)))
cheb.plotOn(massFrame,LineColor(kMagenta),LineStyle(kDotted),Normalization(((1.0-sFrac.getValV())*numEvts)/(numEvts)))
tot.paramOn(massFrame,Layout(0.60,0.99,0.75));
massFrame.Draw()
# In[12]:
plotmax = hist.GetMaximum()*1.05
sidesigma = sigma.getValV()
leftlowside = -7.*sidesigma + mean.getValV()
leftupside = -5.*sidesigma + mean.getValV()
rightlowside = +5.*sidesigma + mean.getValV()
rightupside = +7.*sidesigma + mean.getValV()
signallow = -3.*sidesigma + mean.getValV()
signalup = +3.*sidesigma + mean.getValV()
示例7: TCanvas
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import paramOn [as 別名]
#nk1 = model3.createNLL(data)
#RooMinuit(nk1).migrad()
#Rk1 = k2.frame()
#nk1.plotOn(Rk1,RooFit.ShiftToZero())
#cRcc = TCanvas("Rcc", "Rcc", 500, 500)
#Rk1.SetMaximum(4.);Rk1.SetMinimum(0)
#Rk1.GetXaxis().SetTitle("nttbar/nmc")
#Rk1.SetTitle("")
#Rk1.Draw()
cR11 = TCanvas("R11", "R", 500, 500)
xframe = x.frame()
data.plotOn(xframe, RooFit.DataError(RooAbsData.SumW2) )
model3.paramOn(xframe, RooFit.Layout(0.65,0.9,0.9) )
model3.plotOn(xframe)
chi2 = xframe.chiSquare(2)
ndof = xframe.GetNbinsX()
print "chi2 = "+ str(chi2)
print "ndof = "+ str(ndof)
xframe.Draw()
print "k1:"+str(k1.getVal())+", err:"+str(k1.getError())+", init:"+str(rttbar)
print "k2:"+str(k2.getVal())+", err:"+str(k2.getError())
n_mctotal = n_ttbar+n_background
print "####################"
print "ttbar = " + str(n_ttbar)