當前位置: 首頁>>代碼示例>>Python>>正文


Python RooAddPdf.generate方法代碼示例

本文整理匯總了Python中ROOT.RooAddPdf.generate方法的典型用法代碼示例。如果您正苦於以下問題:Python RooAddPdf.generate方法的具體用法?Python RooAddPdf.generate怎麽用?Python RooAddPdf.generate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ROOT.RooAddPdf的用法示例。


在下文中一共展示了RooAddPdf.generate方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_correlated_values

# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import generate [as 別名]
def test_correlated_values():

    try:
        import uncertainties
    except ImportError:
        raise SkipTest("uncertainties package is not installed")
    from rootpy.stats.correlated_values import correlated_values

    # construct pdf and toy data following example at
    # http://root.cern.ch/drupal/content/roofit

    # --- Observable ---
    mes = RooRealVar("mes", "m_{ES} (GeV)", 5.20, 5.30)

    # --- Parameters ---
    sigmean = RooRealVar("sigmean", "B^{#pm} mass", 5.28, 5.20, 5.30)
    sigwidth = RooRealVar("sigwidth", "B^{#pm} width", 0.0027, 0.001, 1.)

    # --- Build Gaussian PDF ---
    signal = RooGaussian("signal", "signal PDF", mes, sigmean, sigwidth)

    # --- Build Argus background PDF ---
    argpar = RooRealVar("argpar", "argus shape parameter", -20.0, -100., -1.)
    background = RooArgusBG("background", "Argus PDF",
                            mes, RooFit.RooConst(5.291), argpar)

    # --- Construct signal+background PDF ---
    nsig = RooRealVar("nsig", "#signal events", 200, 0., 10000)
    nbkg = RooRealVar("nbkg", "#background events", 800, 0., 10000)
    model = RooAddPdf("model", "g+a",
                      RooArgList(signal,background),
                      RooArgList(nsig,nbkg))

    # --- Generate a toyMC sample from composite PDF ---
    data = model.generate(RooArgSet(mes), 2000)

    # --- Perform extended ML fit of composite PDF to toy data ---
    fitresult = model.fitTo(data, RooFit.Save(), RooFit.PrintLevel(-1))

    nsig, nbkg = correlated_values(["nsig", "nbkg"], fitresult)

    # Arbitrary math expression according to what the `uncertainties`
    # package supports, automatically computes correct error propagation
    sum_value = nsig + nbkg
    value, error = sum_value.nominal_value, sum_value.std_dev

    workspace = Workspace(name='workspace')
    # import the data
    assert_false(workspace(data))
    with TemporaryFile():
        workspace.Write()
開發者ID:S-Bahrasemani,項目名稱:rootpy,代碼行數:53,代碼來源:test_correlated_values.py

示例2: RooAddPdf

# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import generate [as 別名]
pdf_combine1 = RooAddPdf("pdf_combine1"," gauss4 + gauss5 ", RooArgList(gauss4 , gauss5 ), RooArgList( frac_combine1 ))


#pdf_combine1.plotOn(xframe3,RooFit.LineColor(RooFit.kBlue))

gauss4.plotOn(xframe3, RooFit.Normalization( frac_combine1.getVal()   ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kOrange))
gauss5.plotOn(xframe3, RooFit.Normalization( 1-frac_combine1.getVal() ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kCyan))
pdf_combine1.plotOn(xframe3, RooFit.Normalization(1.0,RooAbsReal.Relative) ,RooFit.LineColor(RooFit.kBlue))

# -------------------------------------------
# 4. use combine PDF to generate MC

xframe4 = x.frame(RooFit.Title("4. use combine PDF to generate MC"))

data2 = pdf_combine1.generate(RooArgSet(x),500)

#pdf_combine1.plotOn(xframe4, RooFit.Normalization(500, RooAbsReal.NumEvent) , RooFit.LineColor(RooFit.kOrange))
data2.plotOn(xframe4)
pdf_combine1.plotOn(xframe4,RooFit.LineColor(RooFit.kBlue))

# -------------------------------------------
# 5. use combine PDF to fit the toy MC

xframe5 = x.frame(RooFit.Title("5. use combine PDF to fit the toy MC"))

# gauss 6
mean6 = RooRealVar("mean6","mean of gaussian",-1,-10,10)
sigma6 = RooRealVar("sigma6","width of gaussian",4,0.1,10)

gauss6 = RooGaussian("gauss6","gaussian PDF",x,mean6,sigma6)
開發者ID:wvieri,項目名稱:new_git,代碼行數:32,代碼來源:test_addPDF_extPDF.py

示例3: rf501_simultaneouspdf

# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import generate [as 別名]
def rf501_simultaneouspdf():
    # C r e a t e   m o d e l   f o r   p h y s i c s   s a m p l e
    # -------------------------------------------------------------

    # Create observables
    x = RooRealVar( "x", "x", -8, 8 ) 

    # Construct signal pdf
    mean = RooRealVar( "mean", "mean", 0, -8, 8 ) 
    sigma = RooRealVar( "sigma", "sigma", 0.3, 0.1, 10 ) 
    gx = RooGaussian( "gx", "gx", x, mean, sigma ) 

    # Construct background pdf
    a0 = RooRealVar( "a0", "a0", -0.1, -1, 1 ) 
    a1 = RooRealVar( "a1", "a1", 0.004, -1, 1 ) 
    px = RooChebychev( "px", "px", x, RooArgList( a0, a1 ) ) 

    # Construct composite pdf
    f = RooRealVar( "f", "f", 0.2, 0., 1. ) 
    model = RooAddPdf( "model", "model", RooArgList( gx, px ), RooArgList( f ) ) 



    # C r e a t e   m o d e l   f o r   c o n t r o l   s a m p l e
    # --------------------------------------------------------------

    # Construct signal pdf. 
    # NOTE that sigma is shared with the signal sample model
    mean_ctl = RooRealVar( "mean_ctl", "mean_ctl", -3, -8, 8 ) 
    gx_ctl = RooGaussian( "gx_ctl", "gx_ctl", x, mean_ctl, sigma ) 

    # Construct the background pdf
    a0_ctl = RooRealVar( "a0_ctl", "a0_ctl", -0.1, -1, 1 ) 
    a1_ctl = RooRealVar( "a1_ctl", "a1_ctl", 0.5, -0.1, 1 ) 
    px_ctl = RooChebychev( "px_ctl", "px_ctl", x, RooArgList( a0_ctl, a1_ctl ) ) 

    # Construct the composite model
    f_ctl = RooRealVar( "f_ctl", "f_ctl", 0.5, 0., 1. ) 
    model_ctl = RooAddPdf( "model_ctl", "model_ctl", RooArgList( gx_ctl, px_ctl ),
                           RooArgList( f_ctl ) ) 
    


    # G e n e r a t e   e v e n t s   f o r   b o t h   s a m p l e s 
    # ---------------------------------------------------------------

    # Generate 1000 events in x and y from model
    data = model.generate( RooArgSet( x ), 100 ) 
    data_ctl = model_ctl.generate( RooArgSet( x ), 2000 ) 



    # C r e a t e   i n d e x   c a t e g o r y   a n d   j o i n   s a m p l e s 
    # ---------------------------------------------------------------------------
    # Define category to distinguish physics and control samples events
    sample = RooCategory( "sample", "sample" ) 
    sample.defineType( "physics" ) 
    sample.defineType( "control" ) 

    # Construct combined dataset in (x,sample)
    combData = RooDataSet( "combData", "combined data", RooArgSet(x), RooFit.Index( sample ),
                          RooFit.Import( "physics", data ),
                          RooFit.Import( "control", data_ctl ) ) 



    # C o n s t r u c t   a   s i m u l t a n e o u s   p d f   i n   ( x , s a m p l e )
    # -----------------------------------------------------------------------------------

    # Construct a simultaneous pdf using category sample as index
    simPdf = RooSimultaneous( "simPdf", "simultaneous pdf", sample ) 

    # Associate model with the physics state and model_ctl with the control state
    simPdf.addPdf( model, "physics" ) 
    simPdf.addPdf( model_ctl, "control" ) 



    # P e r f o r m   a   s i m u l t a n e o u s   f i t
    # ---------------------------------------------------

    # Perform simultaneous fit of model to data and model_ctl to data_ctl
    simPdf.fitTo( combData ) 



    # P l o t   m o d e l   s l i c e s   o n   d a t a    s l i c e s 
    # ----------------------------------------------------------------

    # Make a frame for the physics sample
    frame1 = x.frame( RooFit.Bins( 30 ), RooFit.Title( "Physics sample" ) ) 

    # Plot all data tagged as physics sample
    combData.plotOn( frame1, RooFit.Cut( "sample==sample::physics" ) ) 

    # Plot "physics" slice of simultaneous pdf. 
    # NBL You _must_ project the sample index category with data using ProjWData 
    # as a RooSimultaneous makes no prediction on the shape in the index category 
    # and can thus not be integrated
    simPdf.plotOn( frame1, RooFit.Slice( sample, "physics" ),
#.........這裏部分代碼省略.........
開發者ID:BristolTopGroup,項目名稱:DailyPythonScripts,代碼行數:103,代碼來源:rf501_simultaneouspdf.py

示例4: RooRealVar

# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import generate [as 別名]
sigmean = RooRealVar("sigmean", "B^{#pm} mass", 5.28, 5.20, 5.30)
sigwidth = RooRealVar("sigwidth", "B^{#pm} width", 0.0027, 0.001, 1.)
 
# --- Build Gaussian PDF ---
signal = RooGaussian("signal", "signal PDF", mes, sigmean, sigwidth)

argpar = RooRealVar("argpar", "argus shape parameter", -20.0, -100., -1.)
background = RooArgusBG("background", "Argus PDF", mes, RooFit.RooConst(5.291), argpar)
 
# --- Construct signal+background PDF ---
nsig = RooRealVar("nsig", "#signal events", 200, 0., 10000)
nbkg = RooRealVar("nbkg", "#background events", 800, 0., 10000)
model = RooAddPdf("model", "g+a", RooArgList(signal, background), RooArgList(nsig, nbkg))

# --- Generate a toyMC sample from composite PDF ---
data = model.generate(RooArgSet(mes), 2000)
 
# --- Perform extended ML fit of composite PDF to toy data ---
model.fitTo(data)
 
# --- Plot toy data and composite PDF overlaid ---
mesframe = mes.frame()
data.plotOn(mesframe)
model.plotOn(mesframe)
model.plotOn(mesframe, RooFit.Components('background'), RooFit.LineStyle(kDashed))

mesframe.Draw()

print 'nsig:',nsig.getValV(), '+-', nsig.getError()
print 'nbkg:', nbkg.getValV(), '+-', nbkg.getError()
print 'mes:', mes.getValV(), '+-', mes.getError()
開發者ID:BristolTopGroup,項目名稱:DailyPythonScripts,代碼行數:33,代碼來源:roofit_advanced.py

示例5: RooRealVar

# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import generate [as 別名]
frac_combine4   = RooRealVar("frac_combine4",   "fraction of gauss4 wrt gauss5", 0.7, 0.,   1.)

pdf_combine4 = RooAddPdf("pdf_combine4"," gauss12 + gauss13 ", RooArgList(gauss12 , gauss13 ), RooArgList( frac_combine4 ))


#pdf_combine1.plotOn(xframe3,RooFit.LineColor(RooFit.kBlue))

#gauss12.plotOn(xframe8, RooFit.Normalization( frac_combine4.getVal()   ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kOrange))
#gauss13.plotOn(xframe8, RooFit.Normalization( 1-frac_combine4.getVal() ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kCyan))
#pdf_combine2.plotOn(xframe8, RooFit.Normalization(1.0,RooAbsReal.Relative) ,RooFit.LineColor(RooFit.kBlue))

# generate toy MC

n_generate = 5000

data4 = pdf_combine4.generate(RooArgSet(x), n_generate )


data4_SB  = RooDataSet("data4_SB", "data4 SB", RooArgSet(x), RooFit.Import( data4 ), RooFit.Cut("x<-2||x>4") )

# set range

x.setRange("signal_region",-2 ,4 )
x.setRange("left_side_band_region",-10 ,-2 )
x.setRange("right_side_band_region",4 ,10 )

# use gauss 13 to generate toy MC and cut right SB 

data_gauss13 = gauss13.generate(RooArgSet(x), n_generate*(1-frac_combine4.getVal() ) )
#data_gauss13.plotOn(xframe8,RooFit.LineColor(RooFit.kGreen))
data_gauss13_right_SB = RooDataSet("data_gauss13_right_SB", "data_gauss13_right_SB", RooArgSet(x), RooFit.Import( data_gauss13 ), RooFit.Cut("x>4") )
開發者ID:wvieri,項目名稱:new_git,代碼行數:33,代碼來源:test_fit_SB_plot.py


注:本文中的ROOT.RooAddPdf.generate方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。