本文整理匯總了Python中ROOT.RooAddPdf.generate方法的典型用法代碼示例。如果您正苦於以下問題:Python RooAddPdf.generate方法的具體用法?Python RooAddPdf.generate怎麽用?Python RooAddPdf.generate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類ROOT.RooAddPdf
的用法示例。
在下文中一共展示了RooAddPdf.generate方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_correlated_values
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import generate [as 別名]
def test_correlated_values():
try:
import uncertainties
except ImportError:
raise SkipTest("uncertainties package is not installed")
from rootpy.stats.correlated_values import correlated_values
# construct pdf and toy data following example at
# http://root.cern.ch/drupal/content/roofit
# --- Observable ---
mes = RooRealVar("mes", "m_{ES} (GeV)", 5.20, 5.30)
# --- Parameters ---
sigmean = RooRealVar("sigmean", "B^{#pm} mass", 5.28, 5.20, 5.30)
sigwidth = RooRealVar("sigwidth", "B^{#pm} width", 0.0027, 0.001, 1.)
# --- Build Gaussian PDF ---
signal = RooGaussian("signal", "signal PDF", mes, sigmean, sigwidth)
# --- Build Argus background PDF ---
argpar = RooRealVar("argpar", "argus shape parameter", -20.0, -100., -1.)
background = RooArgusBG("background", "Argus PDF",
mes, RooFit.RooConst(5.291), argpar)
# --- Construct signal+background PDF ---
nsig = RooRealVar("nsig", "#signal events", 200, 0., 10000)
nbkg = RooRealVar("nbkg", "#background events", 800, 0., 10000)
model = RooAddPdf("model", "g+a",
RooArgList(signal,background),
RooArgList(nsig,nbkg))
# --- Generate a toyMC sample from composite PDF ---
data = model.generate(RooArgSet(mes), 2000)
# --- Perform extended ML fit of composite PDF to toy data ---
fitresult = model.fitTo(data, RooFit.Save(), RooFit.PrintLevel(-1))
nsig, nbkg = correlated_values(["nsig", "nbkg"], fitresult)
# Arbitrary math expression according to what the `uncertainties`
# package supports, automatically computes correct error propagation
sum_value = nsig + nbkg
value, error = sum_value.nominal_value, sum_value.std_dev
workspace = Workspace(name='workspace')
# import the data
assert_false(workspace(data))
with TemporaryFile():
workspace.Write()
示例2: RooAddPdf
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import generate [as 別名]
pdf_combine1 = RooAddPdf("pdf_combine1"," gauss4 + gauss5 ", RooArgList(gauss4 , gauss5 ), RooArgList( frac_combine1 ))
#pdf_combine1.plotOn(xframe3,RooFit.LineColor(RooFit.kBlue))
gauss4.plotOn(xframe3, RooFit.Normalization( frac_combine1.getVal() ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kOrange))
gauss5.plotOn(xframe3, RooFit.Normalization( 1-frac_combine1.getVal() ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kCyan))
pdf_combine1.plotOn(xframe3, RooFit.Normalization(1.0,RooAbsReal.Relative) ,RooFit.LineColor(RooFit.kBlue))
# -------------------------------------------
# 4. use combine PDF to generate MC
xframe4 = x.frame(RooFit.Title("4. use combine PDF to generate MC"))
data2 = pdf_combine1.generate(RooArgSet(x),500)
#pdf_combine1.plotOn(xframe4, RooFit.Normalization(500, RooAbsReal.NumEvent) , RooFit.LineColor(RooFit.kOrange))
data2.plotOn(xframe4)
pdf_combine1.plotOn(xframe4,RooFit.LineColor(RooFit.kBlue))
# -------------------------------------------
# 5. use combine PDF to fit the toy MC
xframe5 = x.frame(RooFit.Title("5. use combine PDF to fit the toy MC"))
# gauss 6
mean6 = RooRealVar("mean6","mean of gaussian",-1,-10,10)
sigma6 = RooRealVar("sigma6","width of gaussian",4,0.1,10)
gauss6 = RooGaussian("gauss6","gaussian PDF",x,mean6,sigma6)
示例3: rf501_simultaneouspdf
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import generate [as 別名]
def rf501_simultaneouspdf():
# C r e a t e m o d e l f o r p h y s i c s s a m p l e
# -------------------------------------------------------------
# Create observables
x = RooRealVar( "x", "x", -8, 8 )
# Construct signal pdf
mean = RooRealVar( "mean", "mean", 0, -8, 8 )
sigma = RooRealVar( "sigma", "sigma", 0.3, 0.1, 10 )
gx = RooGaussian( "gx", "gx", x, mean, sigma )
# Construct background pdf
a0 = RooRealVar( "a0", "a0", -0.1, -1, 1 )
a1 = RooRealVar( "a1", "a1", 0.004, -1, 1 )
px = RooChebychev( "px", "px", x, RooArgList( a0, a1 ) )
# Construct composite pdf
f = RooRealVar( "f", "f", 0.2, 0., 1. )
model = RooAddPdf( "model", "model", RooArgList( gx, px ), RooArgList( f ) )
# C r e a t e m o d e l f o r c o n t r o l s a m p l e
# --------------------------------------------------------------
# Construct signal pdf.
# NOTE that sigma is shared with the signal sample model
mean_ctl = RooRealVar( "mean_ctl", "mean_ctl", -3, -8, 8 )
gx_ctl = RooGaussian( "gx_ctl", "gx_ctl", x, mean_ctl, sigma )
# Construct the background pdf
a0_ctl = RooRealVar( "a0_ctl", "a0_ctl", -0.1, -1, 1 )
a1_ctl = RooRealVar( "a1_ctl", "a1_ctl", 0.5, -0.1, 1 )
px_ctl = RooChebychev( "px_ctl", "px_ctl", x, RooArgList( a0_ctl, a1_ctl ) )
# Construct the composite model
f_ctl = RooRealVar( "f_ctl", "f_ctl", 0.5, 0., 1. )
model_ctl = RooAddPdf( "model_ctl", "model_ctl", RooArgList( gx_ctl, px_ctl ),
RooArgList( f_ctl ) )
# G e n e r a t e e v e n t s f o r b o t h s a m p l e s
# ---------------------------------------------------------------
# Generate 1000 events in x and y from model
data = model.generate( RooArgSet( x ), 100 )
data_ctl = model_ctl.generate( RooArgSet( x ), 2000 )
# C r e a t e i n d e x c a t e g o r y a n d j o i n s a m p l e s
# ---------------------------------------------------------------------------
# Define category to distinguish physics and control samples events
sample = RooCategory( "sample", "sample" )
sample.defineType( "physics" )
sample.defineType( "control" )
# Construct combined dataset in (x,sample)
combData = RooDataSet( "combData", "combined data", RooArgSet(x), RooFit.Index( sample ),
RooFit.Import( "physics", data ),
RooFit.Import( "control", data_ctl ) )
# C o n s t r u c t a s i m u l t a n e o u s p d f i n ( x , s a m p l e )
# -----------------------------------------------------------------------------------
# Construct a simultaneous pdf using category sample as index
simPdf = RooSimultaneous( "simPdf", "simultaneous pdf", sample )
# Associate model with the physics state and model_ctl with the control state
simPdf.addPdf( model, "physics" )
simPdf.addPdf( model_ctl, "control" )
# P e r f o r m a s i m u l t a n e o u s f i t
# ---------------------------------------------------
# Perform simultaneous fit of model to data and model_ctl to data_ctl
simPdf.fitTo( combData )
# P l o t m o d e l s l i c e s o n d a t a s l i c e s
# ----------------------------------------------------------------
# Make a frame for the physics sample
frame1 = x.frame( RooFit.Bins( 30 ), RooFit.Title( "Physics sample" ) )
# Plot all data tagged as physics sample
combData.plotOn( frame1, RooFit.Cut( "sample==sample::physics" ) )
# Plot "physics" slice of simultaneous pdf.
# NBL You _must_ project the sample index category with data using ProjWData
# as a RooSimultaneous makes no prediction on the shape in the index category
# and can thus not be integrated
simPdf.plotOn( frame1, RooFit.Slice( sample, "physics" ),
#.........這裏部分代碼省略.........
示例4: RooRealVar
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import generate [as 別名]
sigmean = RooRealVar("sigmean", "B^{#pm} mass", 5.28, 5.20, 5.30)
sigwidth = RooRealVar("sigwidth", "B^{#pm} width", 0.0027, 0.001, 1.)
# --- Build Gaussian PDF ---
signal = RooGaussian("signal", "signal PDF", mes, sigmean, sigwidth)
argpar = RooRealVar("argpar", "argus shape parameter", -20.0, -100., -1.)
background = RooArgusBG("background", "Argus PDF", mes, RooFit.RooConst(5.291), argpar)
# --- Construct signal+background PDF ---
nsig = RooRealVar("nsig", "#signal events", 200, 0., 10000)
nbkg = RooRealVar("nbkg", "#background events", 800, 0., 10000)
model = RooAddPdf("model", "g+a", RooArgList(signal, background), RooArgList(nsig, nbkg))
# --- Generate a toyMC sample from composite PDF ---
data = model.generate(RooArgSet(mes), 2000)
# --- Perform extended ML fit of composite PDF to toy data ---
model.fitTo(data)
# --- Plot toy data and composite PDF overlaid ---
mesframe = mes.frame()
data.plotOn(mesframe)
model.plotOn(mesframe)
model.plotOn(mesframe, RooFit.Components('background'), RooFit.LineStyle(kDashed))
mesframe.Draw()
print 'nsig:',nsig.getValV(), '+-', nsig.getError()
print 'nbkg:', nbkg.getValV(), '+-', nbkg.getError()
print 'mes:', mes.getValV(), '+-', mes.getError()
示例5: RooRealVar
# 需要導入模塊: from ROOT import RooAddPdf [as 別名]
# 或者: from ROOT.RooAddPdf import generate [as 別名]
frac_combine4 = RooRealVar("frac_combine4", "fraction of gauss4 wrt gauss5", 0.7, 0., 1.)
pdf_combine4 = RooAddPdf("pdf_combine4"," gauss12 + gauss13 ", RooArgList(gauss12 , gauss13 ), RooArgList( frac_combine4 ))
#pdf_combine1.plotOn(xframe3,RooFit.LineColor(RooFit.kBlue))
#gauss12.plotOn(xframe8, RooFit.Normalization( frac_combine4.getVal() ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kOrange))
#gauss13.plotOn(xframe8, RooFit.Normalization( 1-frac_combine4.getVal() ,RooAbsReal.Relative),RooFit.LineColor(RooFit.kCyan))
#pdf_combine2.plotOn(xframe8, RooFit.Normalization(1.0,RooAbsReal.Relative) ,RooFit.LineColor(RooFit.kBlue))
# generate toy MC
n_generate = 5000
data4 = pdf_combine4.generate(RooArgSet(x), n_generate )
data4_SB = RooDataSet("data4_SB", "data4 SB", RooArgSet(x), RooFit.Import( data4 ), RooFit.Cut("x<-2||x>4") )
# set range
x.setRange("signal_region",-2 ,4 )
x.setRange("left_side_band_region",-10 ,-2 )
x.setRange("right_side_band_region",4 ,10 )
# use gauss 13 to generate toy MC and cut right SB
data_gauss13 = gauss13.generate(RooArgSet(x), n_generate*(1-frac_combine4.getVal() ) )
#data_gauss13.plotOn(xframe8,RooFit.LineColor(RooFit.kGreen))
data_gauss13_right_SB = RooDataSet("data_gauss13_right_SB", "data_gauss13_right_SB", RooArgSet(x), RooFit.Import( data_gauss13 ), RooFit.Cut("x>4") )