當前位置: 首頁>>代碼示例>>Python>>正文


Python PriorityQueue.push方法代碼示例

本文整理匯總了Python中PriorityQueue.PriorityQueue.push方法的典型用法代碼示例。如果您正苦於以下問題:Python PriorityQueue.push方法的具體用法?Python PriorityQueue.push怎麽用?Python PriorityQueue.push使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在PriorityQueue.PriorityQueue的用法示例。


在下文中一共展示了PriorityQueue.push方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_dict

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
 def test_dict(self):
     '''Push a dictionary'''
     pq = PriorityQueue()
     d = {'a':10, 'b':4}
     
     pq.push(0, d)
     self.assertEqual(pq.pop()[1], d)
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:9,代碼來源:UnitTestPriorityQueue.py

示例2: test_uselist

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
    def test_uselist(self):
        '''Push a list onto queue and them remove it'''
        pq = PriorityQueue()
        l = []

        pq.push(0,range(0, 10))
        self.assertEqual(pq.pop()[1], range(0, 10))
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:9,代碼來源:UnitTestPriorityQueue.py

示例3: test_pushpop

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
 def test_pushpop(self):
     '''Push items onto queue and then remove them'''
     pq = PriorityQueue()
     for i in range(0, 10):
         pq.push(0,i)
         
     for i in range(0, 10):
         self.assertEqual(pq.pop()[1], i)
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:10,代碼來源:UnitTestPriorityQueue.py

示例4: run

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
    def run(self, gridMap, defStartNode=None, defEndNode=None, distanceType=PFA.DIS_TYPE_MANHATTAN):


        if not gridMap:
            return (PFA.RSLT_GRIDMAP_ERR,)

        startNode = defStartNode
        if not startNode:
            startNode = gridMap.getStartGridNode()
        if not startNode:
            return (PFA.RSLT_NO_START_NODE,)

        endNode = defEndNode
        if not endNode:
            endNode = gridMap.getEndGridNode()    
        if not endNode:
            return (PFA.RSLT_NO_END_NODE,)

        hdis = self.getDistance(startNode, endNode, distanceType)
        if hdis < 0:
            return (PFA.RSLT_DIS_INVALID,)

        self.gridMap = gridMap

        self.initPathMap(gridMap, distanceType)

        openSet = PQ()

        startPathNode = self.pMap[startNode.x][startNode.y]
        openSet.push(startPathNode)

        endPathNode = self.pMap[endNode.x][endNode.y]

        ret = (PFA.RSLT_NONE,)
        jumpPoint = []
        while not openSet.isEmpty() and ret[0] == PFA.RSLT_NONE:
            currNode = openSet.pop()
            jumpPoint.append(currNode)
            currNode.isInClose = True
            currGridNode = currNode.gridNode

            if gridMap.isEndGridNode(currGridNode.x, currGridNode.y):
                ret = (PFA.RSLT_OK, self.genValidPath(gridMap), self.genAllVisNodeSet(gridMap), jumpPoint)
                break

            for i in range(len(self.visMap)):
                for j in range(len(self.visMap[i])):
                    self.visMap[i][j] = False

            for dv in PFA.DIR_VECTOR:
                if not self.isOkPos(currGridNode, dv):
                    continue
                jumpNode = self.findJumpNode(currNode, currNode, self.getPathNode(currGridNode, dv), openSet)
                if jumpNode:
                    self.updateJumpNode(currNode, jumpNode, openSet)

        return ret
開發者ID:pgdnxu,項目名稱:PathFinder,代碼行數:59,代碼來源:PFAlgorithmJPS.py

示例5: dijkstraBi

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
    def dijkstraBi(self, start, goal, exceptions=None):
        '''Bi-Directional Dijkstra's algorithm. The search begins at the
        ``start`` node and at the ``goal`` node simultaneously. The search area
        expands radially outward from both ends until the two meet in the
        middle. In most cases this reduces the number of vertices which must
        be checked by half.
        
        .. image:: dijkstra.png
        .. image:: dijkstra-bidirectional.png
        
        Search area of Dijkstra's algorithm (left) vs search area of 
        bi-directional Dijkstra's algorithm (right).
            
        .. seealso::
            :func:`aStarPath`, :func:`dijkstra`
        '''
        dist_f = {}       # dictionary of final distances
        dist_b = {}       # dictionary of final distances
        
        came_from_f = {} # dictionary of predecessors
        came_from_b = {} # dictionary of predecessors
        
        # nodes not yet found
        forward = PriorityQueue()
        backward = PriorityQueue()

        # The set of nodes already evaluated
        closedset_forward = []
        closedset_backward = []
        
        forward.push(0, start)
        backward.push(0, goal)
        
        while len(forward) + len(backward) > 0:
            if len(forward) > 0:
                done, stop = self.__dijkstraBiIter(start, goal, exceptions, 
                                        dist_f, came_from_f, forward, 
                                        closedset_forward, closedset_backward)

            if not done and len(backward) > 0:
                done, stop = self.__dijkstraBiIter(goal, start, exceptions,
                                        dist_b, came_from_b, backward, 
                                        closedset_backward, closedset_forward)
        
            if done:
                #log.debug("came_from_f: " + str(came_from_f))
                #log.debug("came_from_b: " + str(came_from_b))
                
                pathf = self.reconstructPath(came_from_f, stop)
                #log.info("PathF: %s" % pathf)
                
                pathb = self.reconstructPath(came_from_b, stop)
                pathb.reverse()
                #log.info("PathB: %s" % pathb)
                
                return pathf + pathb[1:]
        return None
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:59,代碼來源:Pathfinding.py

示例6: test_multiple

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
 def test_multiple(self):
     '''Test that two different priority queues do not interfere with
     each other'''
     pq = PriorityQueue()
     pq.push(0, 'A')
     
     pq = PriorityQueue()
     self.assertEqual(len(pq), 0)
     with self.assertRaises(IndexError):
         pq.pop()
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:12,代碼來源:UnitTestPriorityQueue.py

示例7: dijkstra

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
    def dijkstra(self, start, goal, exceptions=None):
        '''Dijkstra's algorithm, conceived by Dutch computer scientist Edsger 
        Dijkstra in 1956 and published in 1959, is a graph search algorithm 
        that solves the single-source shortest path problem for a graph with
        nonnegative edge path costs, producing a shortest path tree.
        
        .. note::
            Unmodified, Dijkstra's algorithm searches outward in a circle from
            the start node until it reaches the goal. It is therefore slower
            than other methods like A* or Bi-directional Dijkstra's. The
            algorithm is included here for performance comparision against
            other algorithms only.
        
        .. seealso::
            :func:`aStarPath`, :func:`dijkstraBi`
        '''
        dist = {}       # dictionary of final distances
        
        came_from = {} # dictionary of predecessors
        
        # nodes not yet found
        queue = PriorityQueue()

        # The set of nodes already evaluated
        closedset = []
        
        queue.push(0, start)
        
        while len(queue) > 0:
            #log.debug("queue: " + str(queue))
            weight, x = queue.pop()
            dist[x] = weight
            if x == goal:
                #log.debug("came_from: " + str(came_from))
                path = self.reconstructPath(came_from, goal)
                #log.info("Path: %s" % path)
                return path
                        
            closedset.append(x)
            
            for y in self.neighborNodes(x):
                if y in closedset:
                    continue                
                if(exceptions is not None and y in exceptions):
                    continue

                costxy = self.timeBetween(x,y)
                
                if not dist.has_key(y) or dist[x] + costxy < dist[y]:
                    dist[y] = dist[x] + costxy
                    queue.reprioritize(dist[y], y)
                    came_from[y] = x
                    #log.debug("Update node %s's weight to %g" % (y, dist[y]))

        return None
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:57,代碼來源:Pathfinding.py

示例8: test_neg_priority

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
 def test_neg_priority(self):
     '''Negative priorities'''
     pq = PriorityQueue()
     for i in range(-5, 5):
         pq.push(i,i)
         
     for i in range(-5, 5):
         pri, item = pq.pop()
         # Priorities match
         self.assertEqual(pri, i)
         # Values match
         self.assertEqual(item, i)
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:14,代碼來源:UnitTestPriorityQueue.py

示例9: test_priority

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
 def test_priority(self):
     '''Test the priority portion of the priority queue'''
     pq = PriorityQueue()
     for i in range(0, 10):
         pq.push(i,i)
         
     for i in range(0, 10):
         pri, item = pq.pop()
         # Priorities match
         self.assertEqual(pri, i)
         # Values match
         self.assertEqual(item, i)
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:14,代碼來源:UnitTestPriorityQueue.py

示例10: alternateRoute

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
    def alternateRoute(self, num, optimal_path):
        '''To obtain a ranked list of less-than-optimal solutions, the optimal 
        solution must first calculated. This optimal solution is passed in as
        ``optimal_path``. A single edge appearing in the optimal solution is 
        removed from the graph, and the optimum solution to this new graph is 
        calculated. Each edge of the original solution is suppressed in turn
        and a new shortest-path calculated. The secondary solutions are then
        ranked and the ``num`` best sub-optimal solutions are returned. If 
        less than ``num`` solutions exist for the given graph, less than
        ``num`` solutions will be returned. The results are a list of tuples
        of form: 
        ``((cost, path), (cost2, path2), ...)``
        
        An example of finding alternate routes::
        
            search = Pathfinding()
            # find optimal route
            optimal_path = search.shortestPath("A", "E")
            # returns ["A", "C", "E"]
            cost = search.pathCost(optimal_path)
            # returns 3
            alt_paths = search.alternateRoute(2, optimal_path)
            # returns ((4, ["A", "B", "D", "E"]), (4, ["A", "B", "F", "E"]))
        '''
        
        # Store the paths by their weights in a priority queue. The paths with
        # the lowest cost will move to the top. At the end, pop() the queue
        # once for each desired alternative.
        minheap = PriorityQueue()
        
        start, goal = optimal_path[0], optimal_path[-1]
        
        # Don't remove the start or goal nodes
        for i in range(1, len(optimal_path) - 1):
            y = optimal_path[i]
            
            log.info("Look for sub-optimal solution with vertex {} removed".\
                    format(y))
            path = self.shortestPath(start, goal, [y])
            #path = self.shortestPath(start, goal)
            cost = self.pathCost(path)
            
            log.debug("Cost of path with vertex %s removed is %g" \
                                    % (y, cost))
            minheap.push(cost, path)

        alternatives = []
        for i in range(0, min(num, len(minheap))):
            cost, path = minheap.pop()
            alternatives.append((cost,path))
            log.debug("Cost of #%d sub-optimal path is %g" % (i+1, cost))
            
        return alternatives
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:55,代碼來源:Pathfinding.py

示例11: test_reprioritize

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
 def test_reprioritize(self):
     
     pq = PriorityQueue()
     for letter in range(ord('A'), ord('Z')+1):
         letter = chr(letter)
         pq.push(0, letter)
         pq.reprioritize(1, letter)
     self.assertEqual(len(pq), 26, "Incorrect length")
     
     for letter in range(ord('A'), ord('Z')+1):
         letter = chr(letter)
         pri, val = pq.pop()
         self.assertEqual(letter, val)
         self.assertEqual(pri, 1)
     self.assertEqual(len(pq), 0, "Incorrect length")
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:17,代碼來源:UnitTestPriorityQueue.py

示例12: getdist

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
def getdist(start, goal, m):
    num_rows = len(m)
    num_cols = len(m[0])
    
    def h(n):
        row1, col1 = n
        row2, col2 = goal
        d_col = min(abs(col1 - col2), num_cols - abs(col1 - col2))
        d_row = min(abs(row1 - row2), num_rows - abs(row1 - row2))
        return d_row + d_col

    
    fringe = PriorityQueue()
    closed = set()
    fringe.push((start, 0), h(start))

    while len(fringe) > 0:
        f, (node, g) = fringe.pop()

        if node in closed: continue
        closed.add(node)
        if node == goal: return g
        
        y, x = node
        suc = (y, (x+1)%num_cols)
        if m[suc[1]][suc[0]] != WATER:
            fringe.push((suc, g+1), g+1+h(suc))
        suc = (y, (x-1)%num_cols)
        if m[suc[1]][suc[0]] != WATER:
            fringe.push((suc, g+1), g+1+h(suc))
        suc = ((y+1)%num_rows, x)
        if m[suc[1]][suc[0]] != WATER:
            fringe.push((suc, g+1), g+1+h(suc))
        suc = ((y-1)%num_rows, x)
        if m[suc[1]][suc[0]] != WATER:
            fringe.push((suc, g+1), g+1+h(suc))

    return inf
開發者ID:sunnyrjuneja,項目名稱:ai_tidbits,代碼行數:40,代碼來源:hierarchical_astar.py

示例13: run

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
	def run(self, gridMap, defStartNode=None, defEndNode=None, distanceType=PFA.DIS_TYPE_MANHATTAN):
		if not gridMap:
			return (PFA.RSLT_GRIDMAP_ERR,)

		startNode = defStartNode
		if not startNode:
			startNode = gridMap.getStartGridNode()
		if not startNode:
			return (PFA.RSLT_NO_START_NODE,)

		endNode = defEndNode
		if not endNode:
			endNode = gridMap.getEndGridNode()
		if not endNode:
			return (PFA.RSLT_NO_END_NODE,)

		self.initPathMap(gridMap, distanceType)

		closeSet = PQ()

		startPathNode = self.pMap[startNode.x][startNode.y]
		closeSet.push(startPathNode)

		endPathNode = self.pMap[endNode.x][endNode.y]
		endPathNode.isInClose = True

		ret = (PFA.RSLT_NONE,)
		while not closeSet.isEmpty() and ret[0] == PFA.RSLT_NONE:
			currNode = closeSet.pop()
			currNode.isInClose = True

			# print("%d,%d,%d" % (currNode.gridNode.x, currNode.gridNode.y,currNode.fv))

			currGridNode = currNode.gridNode

			for dv in PFA.DIR_VECTOR:
				
				nx = currGridNode.x + dv[0]
				ny = currGridNode.y + dv[1]
				
				if not gridMap.isValidPos(nx, ny):
					continue

				if gridMap.isThroughTheWall(currGridNode.x, currGridNode.y, dv):
					continue

				gCost = self.getGCost(dv)

				if gridMap.isEndGridNode(nx, ny):
					endPathNode.updatePrev(currNode, gCost)
					ret = (PFA.RSLT_OK, self.genValidPath(gridMap), self.genAllVisNodeSet(gridMap), None)
					break

				newNode = self.pMap[nx][ny]
				
				if newNode:
					if not newNode.isInClose:
						newNode.isInClose = True
						closeSet.push(newNode)

					if currNode.gv + gCost < newNode.gv:
						newNode.updatePrev(currNode, gCost)
						closeSet.update(newNode)

					# if newNode.isInClose:
					# 	if currNode.gv + gCost < newNode.gv:
					# 		newNode.isInClose = False
					# 		newNode.updatePrev(currNode, gCost)
					# 		openSet.push(newNode)
					# 		newNode.isInOpen = True
					# else:
					# 	if currNode.gv + gCost < newNode.gv:
					# 		newNode.updatePrev(currNode, gCost)
					# 		if not newNode.isInOpen:
					# 			openSet.push(newNode)
					# 			newNode.isInOpen = True
					# 		else:
					# 			openSet.update(newNode)
		return ret
開發者ID:pgdnxu,項目名稱:PathFinder,代碼行數:81,代碼來源:PFAlgorithmDijkstra.py

示例14: PriorityQueue

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
from PriorityQueue import PriorityQueue
from Item import Item

q = PriorityQueue()
q.push(Item('foo'),1)
q.push(Item('bar'),5)
q.push(Item('spam'),4)
q.push(Item('grok'),2)
print q.pop()
print q.pop()
print q.pop()
print q.pop()

a = (Item('foo'),1)
b = (Item('bar'),2)
print a>b
開發者ID:EleVenPerfect,項目名稱:OTHERS,代碼行數:18,代碼來源:1213.py

示例15: aStarPath

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import push [as 別名]
    def aStarPath(self, start, goal, exceptions=None):
        '''A* is an algorithm that is used in pathfinding and graph traversal. 
        Noted for its performance and accuracy, it enjoys widespread use. It
        is an extension of Edger Dijkstra's 1959 algorithm and achieves better 
        performance (with respect to time) by using heuristics.
    
        Takes in the ``start`` node and a ``goal`` node and returns the
        shortest path between them as a list of nodes. Use pathCost() to find
        the cost of traversing the path.
        
        .. note::
            Does not currently use the heuristic function, making it less
            efficient than the bi-directional Dijkstra's algorithm used in 
            :func:`dijkstraBi`.
            
        .. deprecated:: 0.5
            Use :func:`shortestPath` instead.
            
        .. seealso::
            :func:`dijkstra`, :func:`dijkstraBi`
        '''
        
        # The set of nodes already evaluated
        closedset = []
        # The set of tentative nodes to be evaluated.
        openset = [start]
        # The map of navigated nodes.
        came_from = {}
        # Distance from start along optimal path.
        g_score = {start: 0}
        h_score = {start: self.heuristicEstimateOfDistance(start, goal)}
        # The estimated total distance from start to goal through y.
        f_score = PriorityQueue()
        f_score.push(h_score[start], start) 
        
        while len(openset) != 0:
            # the node in openset having the lowest f_score[] value
            heur, x = f_score.pop()
            if x == goal:
                path = self.reconstructPath(came_from, goal)
                #log.info("Path found of weight: %g" % self.pathCost(path))
                #log.info("Path: %s" % path)
                return path
            
            try:
                openset.remove(x)
            except ValueError as e:
                log.critical("Remove %s from the openset: %s" % (str(x), e))
                raise
            
            closedset.append(x)
            for y in self.neighborNodes(x):
                if y in closedset:
                    continue
                
                if(exceptions is not None and (x,y) in exceptions):
                    costxy = float('infinity')
                else:
                    costxy = self.timeBetween(x,y)
                tentative_g_score = g_score[x] + costxy
                
                if y not in openset:
                    openset.append(y)
                    tentative_is_better = True
                elif tentative_g_score < g_score[y]:
                    tentative_is_better = True
                else:
                    tentative_is_better = False

                if tentative_is_better == True:
                    #log.debug("Update node %s's weight to %g" % (y,
															#tentative_g_score))
                    came_from[y] = x
                    g_score[y] = tentative_g_score
                    h_score[y] = self.heuristicEstimateOfDistance(y, goal)
                    f_score.reprioritize(g_score[y] + h_score[y], y)
        return None # Failure
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:79,代碼來源:Pathfinding.py


注:本文中的PriorityQueue.PriorityQueue.push方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。