本文整理匯總了Python中PriorityQueue.PriorityQueue類的典型用法代碼示例。如果您正苦於以下問題:Python PriorityQueue類的具體用法?Python PriorityQueue怎麽用?Python PriorityQueue使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了PriorityQueue類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_uselist
def test_uselist(self):
'''Push a list onto queue and them remove it'''
pq = PriorityQueue()
l = []
pq.push(0,range(0, 10))
self.assertEqual(pq.pop()[1], range(0, 10))
示例2: test_dict
def test_dict(self):
'''Push a dictionary'''
pq = PriorityQueue()
d = {'a':10, 'b':4}
pq.push(0, d)
self.assertEqual(pq.pop()[1], d)
示例3: test_pushpop
def test_pushpop(self):
'''Push items onto queue and then remove them'''
pq = PriorityQueue()
for i in range(0, 10):
pq.push(0,i)
for i in range(0, 10):
self.assertEqual(pq.pop()[1], i)
示例4: __init__
class PriorityEdgeList:
def __init__(self):
self.edges = []
self.priorityEdges = PriorityQueue()
self.empty = True
def InsertEdge(self, y, w):
self.priorityEdges.add_task(y, w)
self.edges.append( Graphs.Edge(y,w))
self.empty = False
示例5: primsAlgorithm
def primsAlgorithm(graph, start, surface):
for v in graph:
v.setStatus(0)
v.setParent(None)
pq = PriorityQueue()
#heapq.heappush(pq, (0, start))
pq.enQueue((0, start))
while (not pq.isEmpty()):
current = pq.deQueue()[1]
current.setStatus(2)
if(current.getParent() != None):
graph.drawEdge(current.getParent(), current, surface, "yellow")
time.sleep(0.5)
#print(str(current.getParent().getId()) + "->" + str(current.getId()))
for neighbour in current.getNeighbours():
if (neighbour.getStatus() == 0):
neighbour.setStatus(1)
neighbour.setParent(current)
neighbour.setpqWeight(current.neighbours[neighbour])
#print(str(neighbour.getpqWeight()))
pq.enQueue((neighbour.getpqWeight(), neighbour))
elif (neighbour.getStatus() == 1):
if (neighbour.getpqWeight() > current.neighbours[neighbour]):
old = (neighbour.getpqWeight(), neighbour)
neighbour.setpqWeight(current.neighbours[neighbour])
pq.updatePriority(old, (neighbour.getpqWeight(), neighbour))
neighbour.setParent(current)
"""
示例6: prims
def prims(self, graph, start, canvas):
for v in graph:
v.setStatus(0)
v.setParent(None)
pq = PriorityQueue()
pq.enQueue((0, start))
while (not pq.isEmpty()):
current = pq.deQueue()[1]
current.setStatus(2)
if(current.getParent() != None):
graph.drawEdge(current.getParent(), current, canvas, "yellow")
canvas.update()
time.sleep(0.5)
for neighbour in current.getNeighbours():
if (neighbour.getStatus() == 0):
# Encountered a new vertex
neighbour.setStatus(1)
neighbour.setParent(current)
neighbour.setpqWeight(current.neighbours[neighbour])
pq.enQueue((neighbour.getpqWeight(), neighbour))
elif (neighbour.getStatus() == 1):
if (neighbour.getpqWeight() > current.neighbours[neighbour]):
# Found smaller weight, update accordingly
old = (neighbour.getpqWeight(), neighbour)
neighbour.setpqWeight(current.neighbours[neighbour])
pq.updatePriority(old, (neighbour.getpqWeight(), neighbour))
neighbour.setParent(current)
示例7: test_priority
def test_priority(self):
'''Test the priority portion of the priority queue'''
pq = PriorityQueue()
for i in range(0, 10):
pq.push(i,i)
for i in range(0, 10):
pri, item = pq.pop()
# Priorities match
self.assertEqual(pri, i)
# Values match
self.assertEqual(item, i)
示例8: alternateRoute
def alternateRoute(self, num, optimal_path):
'''To obtain a ranked list of less-than-optimal solutions, the optimal
solution must first calculated. This optimal solution is passed in as
``optimal_path``. A single edge appearing in the optimal solution is
removed from the graph, and the optimum solution to this new graph is
calculated. Each edge of the original solution is suppressed in turn
and a new shortest-path calculated. The secondary solutions are then
ranked and the ``num`` best sub-optimal solutions are returned. If
less than ``num`` solutions exist for the given graph, less than
``num`` solutions will be returned. The results are a list of tuples
of form:
``((cost, path), (cost2, path2), ...)``
An example of finding alternate routes::
search = Pathfinding()
# find optimal route
optimal_path = search.shortestPath("A", "E")
# returns ["A", "C", "E"]
cost = search.pathCost(optimal_path)
# returns 3
alt_paths = search.alternateRoute(2, optimal_path)
# returns ((4, ["A", "B", "D", "E"]), (4, ["A", "B", "F", "E"]))
'''
# Store the paths by their weights in a priority queue. The paths with
# the lowest cost will move to the top. At the end, pop() the queue
# once for each desired alternative.
minheap = PriorityQueue()
start, goal = optimal_path[0], optimal_path[-1]
# Don't remove the start or goal nodes
for i in range(1, len(optimal_path) - 1):
y = optimal_path[i]
log.info("Look for sub-optimal solution with vertex {} removed".\
format(y))
path = self.shortestPath(start, goal, [y])
#path = self.shortestPath(start, goal)
cost = self.pathCost(path)
log.debug("Cost of path with vertex %s removed is %g" \
% (y, cost))
minheap.push(cost, path)
alternatives = []
for i in range(0, min(num, len(minheap))):
cost, path = minheap.pop()
alternatives.append((cost,path))
log.debug("Cost of #%d sub-optimal path is %g" % (i+1, cost))
return alternatives
示例9: test_neg_priority
def test_neg_priority(self):
'''Negative priorities'''
pq = PriorityQueue()
for i in range(-5, 5):
pq.push(i,i)
for i in range(-5, 5):
pri, item = pq.pop()
# Priorities match
self.assertEqual(pri, i)
# Values match
self.assertEqual(item, i)
示例10: PriorityQueueTest
class PriorityQueueTest(unittest.TestCase):
def setUp(self):
self.p_queue = PriorityQueue()
def test(self):
elements = []
for i in range(1000):
x = random()
elements.append(x)
self.p_queue.insert(x)
elements.sort(reverse=True)
for elem in elements:
self.assertEqual(elem, self.p_queue.pop())
示例11: FindDirections
def FindDirections(self, curState):
pq = PriorityQueue(["dist", "changeDir"])
pq.add({"state": curState, "prev": None, "dist": 0 + self.heuristics(curState), "changeDir": 0, "step": 0})
cnt = 0
while True:
elem = pq.pop()
#print("Dir:", elem["state"].snake.curDir, "step:", elem["step"], "cnt: ", cnt)
ok_dirs = self._get_ok_dirs_(elem["state"])
#print ok_dirs
for d in ok_dirs:
nextState = elem["state"].GetNextState(d)
step = elem["step"] + 1
changeDir = 0
if d != elem["state"].snake.curDir:
changeDir = 1
dist = step + self.heuristics(nextState)
pq.add({"state": nextState, "prev": elem, "dist": dist, "changeDir":changeDir, "step": step} )
#if elem["step"] % 10 == 0:
# print elem["step"]
if pq.IsEmpty():
print "EMPTY!!!!", elem["step"]
if len(pq.storage) > 0:
elem = pq.storage.pop(0)
pq.add(elem)
"""
while len(pq.storage) > 0:
other = pq.storage.pop()
print other["step"], elem["step"]
if abs(other["step"] - elem["step"]) < elem["step"] * 0.1:
break
"""
print elem["state"].IsAppleEaten(), elem["state"].apple.GetApplePos()
#pq.add(other)
cnt += 1
if cnt >= 2000 or self._is_goal(elem["state"]) and elem["step"] > 0:
#print("step:", elem["step"], "cnt:", cnt, "empty:", pq.IsEmpty())
pq.clean()
while True:
self.directions.append(elem["state"].snake.curDir)
elem = elem["prev"]
if elem is None:
break
self.directions.pop() # remove the first direction (the state that already take a step)
return self.directions
示例12: Prim
def Prim(G, w, s):
inf = float("inf")
H = PriorityQueue()
T = []
s.priorite = 0
H.add_task(s, 0)
i = 1
for u in G.sommets:
u.pred = None
if u != s :
H.add_task(u, inf)
u.priorite = inf
try:
while True:
u = H.pop_task()
u.couleur = "noir"
if u.priorite != inf:
if u.pred is not None: T.append((u.pred, u))
for v in u.voisins:
if v.couleur == "blanc": #v n'est pas sorti du tas
if w[(u, v)] < v.priorite:
v.priorite = w[(u, v)]
H.add_task(v, v.priorite)
v.pred = u
except:
pass
return T
示例13: shortest_path
def shortest_path(self, target):
"""
Uses Dijkstra's algorithm to return the shortest paths between the
target and all other nodes in the graph.
"""
if not self.weighted:
print "Graph is not weighted; redirecting to BFS"
return self.bfs(target, min_distance=True)
distances_pq = PriorityQueue("min")
distances_dict = {}
unvisited = []
for node in self.adj_matrix[0]:
if node == target:
distances_pq.enqueue(0, node)
distances_dict[node] = 0
elif node != False:
distances_pq.enqueue(float('inf'), node)
distances_dict[node] = float('inf')
else:
continue
unvisited.append(node)
while unvisited:
min_distance, min_node = distances_pq.dequeue()
if min_node not in unvisited:
continue
neighbors = self.linked(min_node)
for neighbor in neighbors:
neighbor_distance = min(distances_dict[neighbor],
min_distance + self.link_weight(min_node, neighbor))
if neighbor_distance != distances_dict[neighbor]:
distances_dict[neighbor] = neighbor_distance
distances_pq.enqueue(neighbor_distance, neighbor)
unvisited.remove(min_node)
return distances_dict
示例14: FindDirections
def FindDirections(self, curState):
self.directions = []
pq = PriorityQueue(["dist"])
maxDepth = 5
pq.add({"state": curState, "dist": self.heuristics(curState), "step": 0, "prev": None})
cnt = 0
while not pq.IsEmpty():
elem = pq.pop()
state = elem["state"]
stack = []
stack.append({"state": state, "step": 0, "prev": elem["prev"]})
"""
if cnt >= SCREEN_WITH + SCREEN_HEIGHT - 4 * SNAKE_WITH_HALH - 2:
print "size of queue: ", len(pq.queue)
cnt = 0
"""
"""
maxSize = max(len(pq.queue) / 2, len(pq.queue) - randint(10, 20))
reduceSize = min(maxSize, len(pq.queue) - 5)
for i in range(reduceSize):
pq.pop()
"""
if len(pq.queue) > 700:
# TODO: if we cannnot find solution for so long a time, the size of queue should
# be reduced to a pretty small number
for i in range(randint(0,len(pq.queue)-1)):
pq.pop()
#print "size of queue: ", len(pq.queue)
#print curState.snake.body
#print curState.snake.GetBodyRects()
continue
while len(stack) > 0:
el = stack.pop()
stat = el["state"]
if el["step"] >= maxDepth:
pq.add({"state": stat, "dist": self.heuristics(stat), "step": el["step"], "prev": el["prev"]})
continue
if stat.IsAppleEaten():
# guess if the snake can be dead by instinct
stat.AddSnakeLen()
if self._is_possible_dead_(stat):
continue
while el is not None:
self.directions.append(el["state"].snake.curDir)
el = el["prev"]
self.directions.pop()
return
ok_dirs = self._arange_dirs_(stat, self._get_ok_dirs_(stat))
for d in ok_dirs:
nextStat = stat.GetNextState(d)
nextEl = {"state": nextStat, "step": el["step"]+1, "prev": el}
stack.append(nextEl)
self.directions.append(Direction.Stop)
示例15: dijkstrasAlgorithm
def dijkstrasAlgorithm(graph, start):
for v in graph:
v.setStatus(0)
#start.setStatus(2)
start.setDistance(0)
pq = PriorityQueue()
#heapq.heappush(pq, (0, start))
pq.enQueue((0, start))
while (not pq.isEmpty()):
current = pq.deQueue()[1]
current.setStatus(2)
#if(current.getParent() != None):
# print(str(current.getParent().getId()) + "->" + str(current.getId()))
for neighbour in current.getNeighbours():
if (neighbour.getStatus() == 0):
neighbour.setStatus(1)
neighbour.setParent(current)
neighbour.setpqWeight(current.neighbours[neighbour])
neighbour.setDistance(current.getDistance() + current.neighbours[neighbour])
pq.enQueue((neighbour.getpqWeight(), neighbour))
elif (neighbour.getStatus() == 1):
if (neighbour.getDistance()) > (current.getDistance() + current.neighbours[neighbour]):
#old = (neighbour.getpqWeight(), neighbour)
#neighbour.setpqWeight(current.neighbours[neighbour])
#pq.updatePriority(old, (neighbour.getpqWeight(), neighbour))
neighbour.setParent(current)
neighbour.setDistance(current.getDistance() + current.neighbours[neighbour])