當前位置: 首頁>>代碼示例>>Python>>正文


Python PriorityQueue.pop方法代碼示例

本文整理匯總了Python中PriorityQueue.PriorityQueue.pop方法的典型用法代碼示例。如果您正苦於以下問題:Python PriorityQueue.pop方法的具體用法?Python PriorityQueue.pop怎麽用?Python PriorityQueue.pop使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在PriorityQueue.PriorityQueue的用法示例。


在下文中一共展示了PriorityQueue.pop方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: astar

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
def astar(start, successors, goal, g, h):
    path = []
    states = PriorityQueue()
    firststate = start
    states.put((-g(firststate) - h(firststate), firststate))

    i = 0
    nexti = 1
    while True:
        i += 1
        # if i == 40000:
        #    return (0, None)
        if i == nexti:
            nexti += 1  # 3*len(states)
            curbest = states.top()[1]
            print "%8d: # states: %5d, h of best state: %5d" % (i, len(states), h(curbest))
            print "\tcurrent top: score = %6d; %r" % (g(curbest) + h(curbest), curbest)
        try:
            if goal(states.top()[1]):
                print i
                return (states.top()[1], g(states.top()[1]))
        except IndexError:
            return (0, None)
        best = states.top()[1]
        states.pop()
        for s in successors(best):
            prev = [x for x in states if x[1] == s]
            # if len(prev)>0:print prev[0][1]
            # print s
            if len(prev) > 0 and g(s) < g(prev[0][1]):
                states.remove(prev[0])
            if len(prev) > 0:
                continue
            states.put((-g(s) - h(s), s))
開發者ID:cconnett,項目名稱:euler,代碼行數:36,代碼來源:astarpathless.py

示例2: FindDirections

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
    def FindDirections(self, curState):
        self.directions = []
        pq = PriorityQueue(["dist"])
        maxDepth = 5
        pq.add({"state": curState, "dist": self.heuristics(curState), "step": 0, "prev": None})
        cnt = 0
        while not pq.IsEmpty():
            elem = pq.pop()
            state = elem["state"]
            stack = []
            stack.append({"state": state, "step": 0, "prev": elem["prev"]})

            """
            if cnt >= SCREEN_WITH + SCREEN_HEIGHT - 4 * SNAKE_WITH_HALH - 2:
                print "size of queue: ", len(pq.queue)
                cnt = 0
            """
            """
            maxSize = max(len(pq.queue) / 2, len(pq.queue) - randint(10, 20))
            reduceSize = min(maxSize, len(pq.queue) - 5)
            for i in range(reduceSize):
                pq.pop()

            """
            if len(pq.queue) > 700:
                # TODO: if we cannnot find solution for so long a time, the size of queue should
                # be reduced to a pretty small number
                for i in range(randint(0,len(pq.queue)-1)):
                    pq.pop()
                #print "size of queue: ", len(pq.queue)
                #print curState.snake.body
                #print curState.snake.GetBodyRects()
                continue

            while len(stack) > 0:
                el = stack.pop()
                stat = el["state"]

                if el["step"] >= maxDepth:
                    pq.add({"state": stat, "dist": self.heuristics(stat), "step": el["step"], "prev": el["prev"]})
                    continue

                if stat.IsAppleEaten():
                    # guess if the snake can be dead by instinct
                    stat.AddSnakeLen()
                    if self._is_possible_dead_(stat):
                        continue
                    while el is not None:
                        self.directions.append(el["state"].snake.curDir)
                        el = el["prev"]
                    self.directions.pop()
                    return

                ok_dirs = self._arange_dirs_(stat, self._get_ok_dirs_(stat))
                for d in ok_dirs:
                    nextStat = stat.GetNextState(d)
                    nextEl = {"state": nextStat, "step": el["step"]+1, "prev": el}
                    stack.append(nextEl)

        self.directions.append(Direction.Stop)
開發者ID:cyj907,項目名稱:snake,代碼行數:62,代碼來源:AIBDFS.py

示例3: astar

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
def astar(start, successors, goal, g, h):
    path = []
    states = PriorityQueue()
    firststate = (start,None)
    states.put((-g(firststate) - h(firststate), firststate))
    
    i = 0
    while True:
        i += 1
        if i % 2500 == 0:
            print '%8d: # states: %5d, h of best state: %5d' % \
                  (i, len(states), min(h(state[1]) for state in states))
        try:
            if goal(states.top()[1]):
                return g(states.top()[1]), getpath(states.top()[1])
        except IndexError:
            return None
        best = states.top()[1]
        states.pop()
        for s in successors(best):
            prev = [x for x in states if x[1][0] == s]
            s = (s, best)
            #if len(prev)>0:print prev[0][1]
            #print s
            if len(prev) > 0 and g(s) < g(prev[0][1]):
                states.remove(prev[0])
            if len(prev) > 0:
                continue
            states.put((-g(s) - h(s), s))
開發者ID:cconnett,項目名稱:euler,代碼行數:31,代碼來源:astarstateless.py

示例4: test_multiple

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
 def test_multiple(self):
     '''Test that two different priority queues do not interfere with
     each other'''
     pq = PriorityQueue()
     pq.push(0, 'A')
     
     pq = PriorityQueue()
     self.assertEqual(len(pq), 0)
     with self.assertRaises(IndexError):
         pq.pop()
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:12,代碼來源:UnitTestPriorityQueue.py

示例5: test_dict

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
 def test_dict(self):
     '''Push a dictionary'''
     pq = PriorityQueue()
     d = {'a':10, 'b':4}
     
     pq.push(0, d)
     self.assertEqual(pq.pop()[1], d)
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:9,代碼來源:UnitTestPriorityQueue.py

示例6: test_uselist

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
    def test_uselist(self):
        '''Push a list onto queue and them remove it'''
        pq = PriorityQueue()
        l = []

        pq.push(0,range(0, 10))
        self.assertEqual(pq.pop()[1], range(0, 10))
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:9,代碼來源:UnitTestPriorityQueue.py

示例7: test_pushpop

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
 def test_pushpop(self):
     '''Push items onto queue and then remove them'''
     pq = PriorityQueue()
     for i in range(0, 10):
         pq.push(0,i)
         
     for i in range(0, 10):
         self.assertEqual(pq.pop()[1], i)
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:10,代碼來源:UnitTestPriorityQueue.py

示例8: run

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
    def run(self, gridMap, defStartNode=None, defEndNode=None, distanceType=PFA.DIS_TYPE_MANHATTAN):


        if not gridMap:
            return (PFA.RSLT_GRIDMAP_ERR,)

        startNode = defStartNode
        if not startNode:
            startNode = gridMap.getStartGridNode()
        if not startNode:
            return (PFA.RSLT_NO_START_NODE,)

        endNode = defEndNode
        if not endNode:
            endNode = gridMap.getEndGridNode()    
        if not endNode:
            return (PFA.RSLT_NO_END_NODE,)

        hdis = self.getDistance(startNode, endNode, distanceType)
        if hdis < 0:
            return (PFA.RSLT_DIS_INVALID,)

        self.gridMap = gridMap

        self.initPathMap(gridMap, distanceType)

        openSet = PQ()

        startPathNode = self.pMap[startNode.x][startNode.y]
        openSet.push(startPathNode)

        endPathNode = self.pMap[endNode.x][endNode.y]

        ret = (PFA.RSLT_NONE,)
        jumpPoint = []
        while not openSet.isEmpty() and ret[0] == PFA.RSLT_NONE:
            currNode = openSet.pop()
            jumpPoint.append(currNode)
            currNode.isInClose = True
            currGridNode = currNode.gridNode

            if gridMap.isEndGridNode(currGridNode.x, currGridNode.y):
                ret = (PFA.RSLT_OK, self.genValidPath(gridMap), self.genAllVisNodeSet(gridMap), jumpPoint)
                break

            for i in range(len(self.visMap)):
                for j in range(len(self.visMap[i])):
                    self.visMap[i][j] = False

            for dv in PFA.DIR_VECTOR:
                if not self.isOkPos(currGridNode, dv):
                    continue
                jumpNode = self.findJumpNode(currNode, currNode, self.getPathNode(currGridNode, dv), openSet)
                if jumpNode:
                    self.updateJumpNode(currNode, jumpNode, openSet)

        return ret
開發者ID:pgdnxu,項目名稱:PathFinder,代碼行數:59,代碼來源:PFAlgorithmJPS.py

示例9: fast_marching_method

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
def fast_marching_method(graph,start):
    
    h = 1
    
    def calculus_distance(node,graph,weights):
        neighbours = graph.get_neighbours(node);
        if 'y-1' in neighbours :
            if 'y+1' in neighbours:
                x1 = min(weights[neighbours['y-1']],weights[neighbours['y+1']]);
            else :
                x1 = weights[neighbours['y-1']];
        else :
            if 'y+1' in neighbours:
                x1 = weights[neighbours['y+1']];
        if 'x-1' in neighbours:
            if 'x+1' in neighbours:
                x2 = min(weights[neighbours['x-1']],weights[neighbours['x+1']]);
            else :
                x2 = weights[neighbours['x-1']];
        else :
            if 'x+1' in neighbours:
                x2 = weights[neighbours['x+1']];
        
        if 2*h**2-(x1-x2)**2>=0:
            return (x1+x2+(2*h**2-(x1-x2)**2)**0.5)/2
        else:
            return min(x1,x2)+h
        
    
    frontier = PriorityQueue();
    weights = graph.distances;
    
    explored = []
    
    goals = numpy.where(graph.indicator_map==2)
    goals_x = goals[0]
    goals_y = goals[1]
    for i in range(goals_x.size):
        frontier.append([0,(goals_x[i],goals_y[i])])
        weights[(goals_x[i],goals_y[i])] = 0
    
       
    while frontier:
        node = frontier.pop();
        explored.append(node[1])
        #if node[1]==start:
        #   return weights
        neighbours = graph.get_neighbours(node[1]);
        for neighbour in neighbours.itervalues():
            if neighbour not in explored and graph.indicator_map[neighbour]:
                if not neighbour in frontier:
                    frontier.append([calculus_distance(neighbour,graph,weights),neighbour])
                    weights[neighbour]=calculus_distance(neighbour,graph,weights)
                elif weights[neighbour] > calculus_distance(neighbour,graph,weights):
                    frontier[neighbour][0]=calculus_distance(neighbour,graph,weights)
                    weights[neighbour]=calculus_distance(neighbour,graph,weights)
    graph.distances = weights
開發者ID:tristanlabetoulle,項目名稱:Simulation-of-a-crowd-movement,代碼行數:59,代碼來源:FastMarching.py

示例10: dijkstra

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
    def dijkstra(self, start, goal, exceptions=None):
        '''Dijkstra's algorithm, conceived by Dutch computer scientist Edsger 
        Dijkstra in 1956 and published in 1959, is a graph search algorithm 
        that solves the single-source shortest path problem for a graph with
        nonnegative edge path costs, producing a shortest path tree.
        
        .. note::
            Unmodified, Dijkstra's algorithm searches outward in a circle from
            the start node until it reaches the goal. It is therefore slower
            than other methods like A* or Bi-directional Dijkstra's. The
            algorithm is included here for performance comparision against
            other algorithms only.
        
        .. seealso::
            :func:`aStarPath`, :func:`dijkstraBi`
        '''
        dist = {}       # dictionary of final distances
        
        came_from = {} # dictionary of predecessors
        
        # nodes not yet found
        queue = PriorityQueue()

        # The set of nodes already evaluated
        closedset = []
        
        queue.push(0, start)
        
        while len(queue) > 0:
            #log.debug("queue: " + str(queue))
            weight, x = queue.pop()
            dist[x] = weight
            if x == goal:
                #log.debug("came_from: " + str(came_from))
                path = self.reconstructPath(came_from, goal)
                #log.info("Path: %s" % path)
                return path
                        
            closedset.append(x)
            
            for y in self.neighborNodes(x):
                if y in closedset:
                    continue                
                if(exceptions is not None and y in exceptions):
                    continue

                costxy = self.timeBetween(x,y)
                
                if not dist.has_key(y) or dist[x] + costxy < dist[y]:
                    dist[y] = dist[x] + costxy
                    queue.reprioritize(dist[y], y)
                    came_from[y] = x
                    #log.debug("Update node %s's weight to %g" % (y, dist[y]))

        return None
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:57,代碼來源:Pathfinding.py

示例11: test_neg_priority

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
 def test_neg_priority(self):
     '''Negative priorities'''
     pq = PriorityQueue()
     for i in range(-5, 5):
         pq.push(i,i)
         
     for i in range(-5, 5):
         pri, item = pq.pop()
         # Priorities match
         self.assertEqual(pri, i)
         # Values match
         self.assertEqual(item, i)
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:14,代碼來源:UnitTestPriorityQueue.py

示例12: alternateRoute

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
    def alternateRoute(self, num, optimal_path):
        '''To obtain a ranked list of less-than-optimal solutions, the optimal 
        solution must first calculated. This optimal solution is passed in as
        ``optimal_path``. A single edge appearing in the optimal solution is 
        removed from the graph, and the optimum solution to this new graph is 
        calculated. Each edge of the original solution is suppressed in turn
        and a new shortest-path calculated. The secondary solutions are then
        ranked and the ``num`` best sub-optimal solutions are returned. If 
        less than ``num`` solutions exist for the given graph, less than
        ``num`` solutions will be returned. The results are a list of tuples
        of form: 
        ``((cost, path), (cost2, path2), ...)``
        
        An example of finding alternate routes::
        
            search = Pathfinding()
            # find optimal route
            optimal_path = search.shortestPath("A", "E")
            # returns ["A", "C", "E"]
            cost = search.pathCost(optimal_path)
            # returns 3
            alt_paths = search.alternateRoute(2, optimal_path)
            # returns ((4, ["A", "B", "D", "E"]), (4, ["A", "B", "F", "E"]))
        '''
        
        # Store the paths by their weights in a priority queue. The paths with
        # the lowest cost will move to the top. At the end, pop() the queue
        # once for each desired alternative.
        minheap = PriorityQueue()
        
        start, goal = optimal_path[0], optimal_path[-1]
        
        # Don't remove the start or goal nodes
        for i in range(1, len(optimal_path) - 1):
            y = optimal_path[i]
            
            log.info("Look for sub-optimal solution with vertex {} removed".\
                    format(y))
            path = self.shortestPath(start, goal, [y])
            #path = self.shortestPath(start, goal)
            cost = self.pathCost(path)
            
            log.debug("Cost of path with vertex %s removed is %g" \
                                    % (y, cost))
            minheap.push(cost, path)

        alternatives = []
        for i in range(0, min(num, len(minheap))):
            cost, path = minheap.pop()
            alternatives.append((cost,path))
            log.debug("Cost of #%d sub-optimal path is %g" % (i+1, cost))
            
        return alternatives
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:55,代碼來源:Pathfinding.py

示例13: test_priority

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
 def test_priority(self):
     '''Test the priority portion of the priority queue'''
     pq = PriorityQueue()
     for i in range(0, 10):
         pq.push(i,i)
         
     for i in range(0, 10):
         pri, item = pq.pop()
         # Priorities match
         self.assertEqual(pri, i)
         # Values match
         self.assertEqual(item, i)
開發者ID:steven-nichols,項目名稱:ShortQut,代碼行數:14,代碼來源:UnitTestPriorityQueue.py

示例14: PriorityQueueTest

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
class PriorityQueueTest(unittest.TestCase):
    def setUp(self):
        self.p_queue = PriorityQueue()

    def test(self):
        elements = []
        for i in range(1000):
            x = random()
            elements.append(x)
            self.p_queue.insert(x)
        elements.sort(reverse=True)
        for elem in elements:
            self.assertEqual(elem, self.p_queue.pop())
開發者ID:KorobovMS,項目名稱:Algorithms,代碼行數:15,代碼來源:test.py

示例15: FindDirections

# 需要導入模塊: from PriorityQueue import PriorityQueue [as 別名]
# 或者: from PriorityQueue.PriorityQueue import pop [as 別名]
    def FindDirections(self, curState):
        pq = PriorityQueue(["dist", "changeDir"])
        pq.add({"state": curState, "prev": None, "dist": 0 + self.heuristics(curState), "changeDir": 0, "step": 0})
        cnt = 0
        while True:
            elem = pq.pop()
            #print("Dir:", elem["state"].snake.curDir, "step:", elem["step"], "cnt: ", cnt)

            ok_dirs = self._get_ok_dirs_(elem["state"])
            #print ok_dirs
            for d in ok_dirs:
                nextState = elem["state"].GetNextState(d)

                step = elem["step"] + 1
                changeDir = 0
                if d != elem["state"].snake.curDir:
                    changeDir = 1
                dist = step + self.heuristics(nextState)

                pq.add({"state": nextState, "prev": elem, "dist": dist, "changeDir":changeDir, "step": step} )

            #if elem["step"] % 10 == 0:
            #    print elem["step"]
            if pq.IsEmpty():
                print "EMPTY!!!!", elem["step"]
                if len(pq.storage) > 0:
                    elem = pq.storage.pop(0)
                    pq.add(elem)
                """
                while len(pq.storage) > 0:
                    other = pq.storage.pop()
                    print other["step"], elem["step"]
                    if abs(other["step"] - elem["step"]) < elem["step"] * 0.1:
                        break
                        """
                print elem["state"].IsAppleEaten(), elem["state"].apple.GetApplePos()
                #pq.add(other)

            cnt += 1
            if cnt >= 2000 or self._is_goal(elem["state"]) and elem["step"] > 0:
                #print("step:", elem["step"], "cnt:", cnt, "empty:", pq.IsEmpty())
                pq.clean()
                while True:
                    self.directions.append(elem["state"].snake.curDir)
                    elem = elem["prev"]
                    if elem is None:
                        break
                self.directions.pop() # remove the first direction (the state that already take a step)

                return self.directions
開發者ID:cyj907,項目名稱:snake,代碼行數:52,代碼來源:Astar.py


注:本文中的PriorityQueue.PriorityQueue.pop方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。