本文整理匯總了Python中Helper.Helper.getRandomSubset方法的典型用法代碼示例。如果您正苦於以下問題:Python Helper.getRandomSubset方法的具體用法?Python Helper.getRandomSubset怎麽用?Python Helper.getRandomSubset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Helper.Helper
的用法示例。
在下文中一共展示了Helper.getRandomSubset方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _updateKernelParameters
# 需要導入模塊: from Helper import Helper [as 別名]
# 或者: from Helper.Helper import getRandomSubset [as 別名]
def _updateKernelParameters(self, S, A, random=True, normalize=True):
SA = self._getStateActionMatrix(S, A)
if random:
self.MuS = Helper.getRandomSubset(S, self.numFeatures)
self.MuSA = Helper.getRandomSubset(SA, self.numFeatures)
else:
self.MuS = Helper.getRepresentativeRows(S, self.numFeatures, normalize)
self.MuSA = Helper.getRepresentativeRows(SA, self.numFeatures, normalize)
NUM_SAMPLES_FOR_BW_ESTIMATE = 500
# bandwidth for PHI_S
bwNonKbS = Helper.getBandwidth(self.MuS[:, 0:self.NUM_NON_KB_DIM],
NUM_SAMPLES_FOR_BW_ESTIMATE, self.bwFactorNonKbS)
kbPosS = self._reshapeKbPositions(self.MuS[:, self.NUM_NON_KB_DIM:])
bwKbS = Helper.getBandwidth(kbPosS, NUM_SAMPLES_FOR_BW_ESTIMATE,
self.bwFactorKbS)
self.kernelS.setBandwidth(bwNonKbS, bwKbS)
self.kernelS.setWeighting(self.weightNonKbS)
# bandwidth for PHI_SA
bwNonKbSA = Helper.getBandwidth(self.MuSA[:, 0:(self.NUM_NON_KB_DIM + 2)],
NUM_SAMPLES_FOR_BW_ESTIMATE, self.bwFactorNonKbSA)
kbPosSA = self._reshapeKbPositions(self.MuSA[:, (self.NUM_NON_KB_DIM + 2):])
bwKbSA = Helper.getBandwidth(kbPosSA, NUM_SAMPLES_FOR_BW_ESTIMATE,
self.bwFactorKbSA)
self.kernelSA.setBandwidth(bwNonKbSA, bwKbSA)
self.kernelSA.setWeighting(self.weightNonKbSA)
示例2: _getSubsetForGP
# 需要導入模塊: from Helper import Helper [as 別名]
# 或者: from Helper.Helper import getRandomSubset [as 別名]
def _getSubsetForGP(self, S, random=True, normalize=True):
Nsubset = min(self.numSamplesSubsetGP, S.shape[0])
if random:
return Helper.getRandomSubset(S, Nsubset)
else:
return Helper.getRepresentativeRows(S, Nsubset, normalize)
示例3: learn
# 需要導入模塊: from Helper import Helper [as 別名]
# 或者: from Helper.Helper import getRandomSubset [as 別名]
def learn(self, savePrefix, numSampleIt, continueLearning = True,
numLearnIt = 1, startEpsilon = 0.0, epsilonFactor = 1.0):
""" sampling """
self.objectShape = 'quad'
self.numKilobots = 4
self.numEpisodes = 25
self.numStepsPerEpisode = 100
self.stepsPerSec = 4096
self.sDim = self.NUM_NON_KB_DIM + 2 * self.numKilobots
if continueLearning:
# dont reset sample or policy
if self.S is None:
self.S, self.A, self.R, self.S_ = empty((0, self.sDim)),\
empty((0, 2)), empty((0, 1)), empty((0, self.sDim))
else:
# reset samples, policy and number of iterations
self.S, self.A, self.R, self.S_ = empty((0, self.sDim)),\
empty((0, 2)), empty((0, 1)), empty((0, self.sDim))
self.policy = SparseGPPolicy(KilobotKernel(self.NUM_NON_KB_DIM),
self.aRange)
self.it = 0
""" LSTD """
self.lstd.discountFactor = 0.99
factor = 1.0
factorKb = 1.0
weightNonKb = 0.5
self.bwFactorNonKbSA = factor
self.bwFactorKbSA = factorKb
self.weightNonKbSA = weightNonKb
self.bwFactorNonKbS = factor
self.bwFactorKbS = factorKb
self.weightNonKbS = weightNonKb
self.numFeatures = 200
""" REPS """
self.reps.epsilonAction = 0.5
""" GP """
self.policy.GPMinVariance = 0.0
self.policy.GPRegularizer = 0.05
self.numSamplesSubsetGP = 200
self.bwFactorNonKbGP = factor
self.bwFactorKbGP = factorKb
self.weightNonKbGP = weightNonKb
self.numLearnIt = numLearnIt
self.startEpsilon = startEpsilon
self.epsilon = startEpsilon
self.epsilonFactor = epsilonFactor
# make data dir and save params
if savePrefix == '':
savePath = ''
else:
savePath = os.path.join(savePrefix, Helper.getSaveName())
os.makedirs(savePath)
self.saveParams(os.path.join(savePath, 'params'))
rewards = []
for i in range(numSampleIt):
t = time.time()
# get new samples
St, At, Rt, S_t = self._getSamples()
print('sum reward for last samples: {}'.format(Rt.sum()))
rewards += [Rt.sum()]
# add samples
self.S = r_[self.S, St]
self.A = r_[self.A, At]
self.R = r_[self.R, Rt]
self.S_ = r_[self.S_, S_t]
# only keep 10000 samples
SARS = c_[self.S, self.A, self.R, self.S_]
SARS = Helper.getRandomSubset(SARS, 10000)
self.S, self.A, self.R, self.S_ = self._unpackSARS(SARS)
self._updateKernelParameters(self.S, self.A, random=True,
normalize=True)
self.PHI_S = self.kernelS.getGramMatrix(self.S, self.MuS)
#.........這裏部分代碼省略.........