本文整理匯總了Python中Transform.convertQToTwoTheta方法的典型用法代碼示例。如果您正苦於以下問題:Python Transform.convertQToTwoTheta方法的具體用法?Python Transform.convertQToTwoTheta怎麽用?Python Transform.convertQToTwoTheta使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Transform
的用法示例。
在下文中一共展示了Transform.convertQToTwoTheta方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: savePeakListToFile
# 需要導入模塊: import Transform [as 別名]
# 或者: from Transform import convertQToTwoTheta [as 別名]
def savePeakListToFile(self,filename,initialGuess,qData,
numberOfChi,maskedPixelInfo,stddev):
peakList = Fit.getPeakList(self.theDiffractionData.data,qData,
initialGuess,numberOfChi,stddev)
# now, save to file
file = open(filename,"w")
file.write("# A list of diffraction peaks found.\n")
file.write("# Diffraction Data: %s\n" % self.theDiffractionData.filename)
file.write("# Calculated on "+time.asctime()+"\n")
file.write("# Calibration data used to find peaks:\n")
initialGuess.writeCommentString(file)
file.write("# Q data used to find peaks:\n")
file.write("# Peaks:\n")
qData.writeCommentString(file)
if maskedPixelInfo.doPolygonMask and maskedPixelInfo.numPolygons() > 0:
file.write("# All peaks inside of polygon mask(s) were ignored.\n")
file.write(maskedPixelInfo.writePolygonCommentString())
file.write("#%16s%21s%21s%21s%21s%21s%21s%21s\n" % \
("x","y","Real Q","Fit Q","chi","width","intensity","2theta"))
for peak in peakList.getMaskedPeakList(maskedPixelInfo):
x,y,realQ,fitQ,chi,width = peak
intensity=self.getPixelValueBilinearInterpolation(x,y)
twoTheta = Transform.convertQToTwoTheta(fitQ,initialGuess)
file.write("%17.10f %17.10f %17.10f %17.10f %17.10f %17.10f %17.10f %17.10f\n" % \
(x,y,realQ,fitQ,chi,width,intensity,twoTheta) )
file.close()
return peakList
示例2: addConstantQLineCakeImage
# 需要導入模塊: import Transform [as 別名]
# 或者: from Transform import convertQToTwoTheta [as 別名]
def addConstantQLineCakeImage(image,Q,qOrTwoThetaLower,
qOrTwoThetaUpper,numQOrTwoTheta,chiLower,
chiUpper,numChi,color,calibrationData,type):
draw = ImageDraw.Draw(image)
if type == "Q":
if Q < qOrTwoThetaLower or Q > qOrTwoThetaUpper:
return
qIndex = (numQOrTwoTheta-1)*(Q-qOrTwoThetaLower)/ \
(qOrTwoThetaUpper-qOrTwoThetaLower)
draw.line( (qIndex,0)+(qIndex,numChi-1),fill=color)
elif type == "2theta":
twoTheta = Transform.convertQToTwoTheta(Q,calibrationData)
if twoTheta < qOrTwoThetaLower or \
twoTheta > qOrTwoThetaUpper:
return
twoThetaIndex = (numQOrTwoTheta-1)* \
(twoTheta-qOrTwoThetaLower)/ \
(qOrTwoThetaUpper-qOrTwoThetaLower)
draw.line( (twoThetaIndex,0)+(twoThetaIndex,numChi-1),
fill=color)
else:
raise Exception("Unable to add constant Q \
lines to the cake image. The function must be passed \
for the parameter type either 'Q', or '2theta'")
示例3: getSmallestRange
# 需要導入模塊: import Transform [as 別名]
# 或者: from Transform import convertQToTwoTheta [as 別名]
def getSmallestRange(self,calibrationData,type):
""" Get Smallest Range picks the smallest
range in the image which contains
the whole diffraction image.
If the center of the beam is inside the
diffraction data, we know that there will
be some of all chi so chi should very
from -180 to 180. Furthermore, we
know that Q will vary from 0 to its max
which will be on a corner. So
in that case, we can just look in the
corners to find the largets Q value.
If the center of the image is ouside the
diffraction data, that all we know is
that the extremum will be somewhere on
the edge of the image. In that case, we
have to loop through the entire border
to find the extremum
"""
# check if it has already been calculated
if self.lastCalibrationDataGetSmallsetRange != None and \
calibrationData == self.lastCalibrationDataGetSmallsetRange and \
self.lastTypeGetSmallestRange == type:
return self.lastRangeGetSmallestRange
# store value in case it changes.
self.lastCalibrationDataGetSmallsetRange = copy.deepcopy(calibrationData)
self.lastTypeGetSmallestRange = type
if calibrationData.getCenterX()["val"] < 0 or \
calibrationData.getCenterX()["val"] > self.theDiffractionData.size-1 or \
calibrationData.getCenterY()["val"] < 0 or \
calibrationData.getCenterY()["val"] > self.theDiffractionData.size-1:
qLower = None
qUpper = None
chiLower = None
chiUpper = None
for temp in range(self.theDiffractionData.size):
# go around each edge of the image, finding the most extreme q and chi values
q0,chi0 = Transform.getQChi(calibrationData,0,temp)
q1,chi1 = Transform.getQChi(calibrationData,self.theDiffractionData.size-1,temp)
q2,chi2 = Transform.getQChi(calibrationData,temp,0)
q3,chi3 = Transform.getQChi(calibrationData,temp,self.theDiffractionData.size-1)
lowerQ = min(q0,q1,q2,q3)
higherQ = max(q0,q1,q2,q3)
if qLower==None or lowerQ < qLower: qLower = lowerQ
if qUpper==None or higherQ > qUpper: qUpper = higherQ
if chi0 > 180: chi0 -=360
if chi1 > 180: chi1 -=360
if chi2 > 180: chi2 -=360
if chi3 > 180: chi3 -=360
lowerChi = min(chi0,chi1,chi2,chi3)
higherChi = max(chi0,chi1,chi2,chi3)
if chiLower==None or lowerChi < chiLower: chiLower = lowerChi
if chiUpper==None or higherChi > chiUpper: chiUpper = higherChi
tempRange = {"qLower":qLower,"qUpper":qUpper,"chiLower":chiLower,"chiUpper":chiUpper}
self.lastRangeGetSmallestRange = tempRange
return tempRange
else:
q0,chi0 = Transform.getQChi(calibrationData,0,0)
q1,chi1 = Transform.getQChi(calibrationData,0,self.theDiffractionData.size-1)
q2,chi2 = Transform.getQChi(calibrationData,self.theDiffractionData.size-1,0)
q3,chi3 = Transform.getQChi(calibrationData,self.theDiffractionData.size-1,
self.theDiffractionData.size-1)
qUpper = max(q0,q1,q2,q3)
qUpper = float(str(qUpper)[:8])
if type == "Q":
lower = 0
upper = qUpper
elif type == "2theta":
lower = Transform.convertQToTwoTheta(0,calibrationData)
upper = Transform.convertQToTwoTheta(qUpper,calibrationData)
else:
raise Exception("Unable to find smallest range. \
This function must be passed for the parameter type either \
'Q', or '2theta'")
tempRange = {"qOrTwoThetaLower":lower,"qOrTwoThetaUpper":upper,
"chiLower":-180,"chiUpper":180}
self.lastRangeGetSmallestRange = tempRange
return tempRange
示例4: addPeaksCakeImage
# 需要導入模塊: import Transform [as 別名]
# 或者: from Transform import convertQToTwoTheta [as 別名]
def addPeaksCakeImage(image,qOrTwoThetaLower,
qOrTwoThetaUpper,numQOrTwoTheta,chiLower,
chiUpper,numChi,peakList,calibrationData,
color,smallestRangeQOrTwoThetaLower,
smallestRangeQOrTwoThetaUpper,
smallestRangeChiLower,smallestRangeChiUpper,
maskedPixelInfo,type):
draw = ImageDraw.Draw(image)
unZoomWidth = 2.5
# scale the length of the xs. For example, zoomed
# in to 50% means will cause the xs to be drawn
# with double the length.
numTimesZoomInQOrTwoTheta = \
abs((smallestRangeQOrTwoThetaUpper - \
smallestRangeQOrTwoThetaLower)/ \
(qOrTwoThetaUpper-qOrTwoThetaLower))
numTimesZoomInChi = abs((smallestRangeChiUpper-\
smallestRangeChiLower)/(chiUpper-chiLower))
scalingFactor = min(numTimesZoomInQOrTwoTheta,
numTimesZoomInChi)
halflength = unZoomWidth*scalingFactor
for x,y,qReal,qFit,chi,width in \
peakList.getMaskedPeakList(maskedPixelInfo):
# for each peak, we want to take the true
# x,y value of where the peak is on the
# image and figure out where it belongs on
# the cake data.
qTemp,chiTemp = Transform.getQChi(calibrationData,x,y)
# if our chi range begins in the negative,
# we might have to place our chi values
# in their 360 degree rotated values. Note
# that getQChi always returns chi between
# 0 and 360
if (chiTemp-360) > chiLower and \
(chiTemp-360) < chiUpper:
chiTemp -= 360
if type == "Q":
cakeX = (numQOrTwoTheta-1)*(qTemp-qOrTwoThetaLower)/ \
(qOrTwoThetaUpper-qOrTwoThetaLower)
elif type == '2theta':
twoThetaTemp = Transform.convertQToTwoTheta(
qTemp,calibrationData)
cakeX = (numQOrTwoTheta-1)* \
(twoThetaTemp-qOrTwoThetaLower)/ \
(qOrTwoThetaUpper-qOrTwoThetaLower)
else:
raise Exception("Unable to add peak to the cake \
image. The function must be passed for the parameter type \
either 'Q', or '2theta'")
cakeY = (numChi-1)*(chiTemp-chiLower)/(chiUpper-chiLower)
# add in new lines if they would be visible
if cakeX >= 0 and cakeX < numQOrTwoTheta and \
cakeY >= 0 and cakeY < numChi:
draw.line( (cakeX-halflength,cakeY-halflength) +
(cakeX+halflength,cakeY+halflength),fill=color)
draw.line( (cakeX+halflength,cakeY-halflength) +
(cakeX-halflength,cakeY+halflength),fill=color)