本文整理匯總了Python中SdA.pretraining_functions方法的典型用法代碼示例。如果您正苦於以下問題:Python SdA.pretraining_functions方法的具體用法?Python SdA.pretraining_functions怎麽用?Python SdA.pretraining_functions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類SdA
的用法示例。
在下文中一共展示了SdA.pretraining_functions方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_SdA
# 需要導入模塊: import SdA [as 別名]
# 或者: from SdA import pretraining_functions [as 別名]
#.........這裏部分代碼省略.........
n_train_batches /= batch_size
# numpy random generator
# start-snippet-3
numpy_rng = numpy.random.RandomState(89677)
print '... building the model'
# print 'W: ', W
# print 'b: ', b
################################################################
################CONSTRUCTION OF SdA CLASS#######################
sda = SdA(
numpy_rng=numpy_rng,
n_ins=n_ins,
hidden_layers_sizes=hidden_layers_sizes,
n_outs=n_outs)
print 'SdA constructed'
################################################################
################################################################
################################################################
# end-snippet-3 start-snippet-4
#########################
# PRETRAINING THE MODEL #
#########################
flag = open(prefix+'flag.pkl','wb')
cPickle.dump(1,flag, protocol = cPickle.HIGHEST_PROTOCOL)
flag.close()
print '... getting the pretraining functions'
pretraining_fns = sda.pretraining_functions(train_set_x=train_set_x,batch_size=batch_size)
print 'Length of pretraining function: ', len(pretraining_fns)
print '... pre-training the model'
start_time = time.clock()
## Pre-train layer-wise
log_pretrain_cost = []
shapeimg = [(33,44),(50,60), (25,40), (50,10)]
#corruption_levels = [.001, .001, .001]
for i in xrange(sda.n_layers):
# if i < layer_number:
# i = layer_number
#print i
# go through pretraining epochs
best_cost = numpy.inf
adapt_counter = 0
learning_rate = pretrain_lr
if i==0:
num_of_epochs = pretraining_epochs
else:
num_of_epochs = pretraining_epochs
for epoch in xrange(num_of_epochs):
##########################################
# if epoch_flag is 1 and epoch < epochs_done_preTraining:
# epoch = epochs_done_preTraining
示例2: test_SdA
# 需要導入模塊: import SdA [as 別名]
# 或者: from SdA import pretraining_functions [as 別名]
#.........這裏部分代碼省略.........
n_train_batches /= batch_size
# numpy random generator
# start-snippet-3
numpy_rng = numpy.random.RandomState(89677)
print '... building the model'
# print 'W: ', W
# print 'b: ', b
################################################################
################CONSTRUCTION OF SdA CLASS#######################
sda = SdA(
numpy_rng=numpy_rng,
n_ins=n_ins,
hidden_layers_sizes=hidden_layers_sizes,
n_outs=n_outs, W = W, b=b)
print 'SdA constructed'
################################################################
################################################################
if flagValue is 1:
################################################################
# end-snippet-3 start-snippet-4
#########################
# PRETRAINING THE MODEL #
#########################
flag = open(prefix+'flag.pkl','wb')
cPickle.dump(1,flag, protocol = cPickle.HIGHEST_PROTOCOL)
flag.close()
print '... getting the pretraining functions'
pretraining_fns = sda.pretraining_functions(train_set_x=train_set_x,batch_size=batch_size)
print 'Length of pretraining function: ', len(pretraining_fns)
print '... pre-training the model'
start_time = time.clock()
## Pre-train layer-wise
log_pretrain_cost = []
#corruption_levels = [.001, .001, .001]
for i in xrange(sda.n_layers):
if i < layer_number:
i = layer_number
#print i
# go through pretraining epochs
for epoch in xrange(pretraining_epochs):
##########################################
if epoch_flag is 1 and epoch < epochs_done_preTraining:
epoch = epochs_done_preTraining
epoch_flag = 0
##########################################
# go through the training set
c = []
for batch_index in xrange(n_train_batches):
#sprint batch_index
c.append(pretraining_fns[i](index=batch_index,
corruption=corruption_levels[i],
lr=pretrain_lr))
print 'Pre-training layer %i, epoch %d, cost ' % (i, epoch),
print numpy.mean(c)
log_pretrain_cost.append(numpy.mean(c))
示例3: Tardy
# 需要導入模塊: import SdA [as 別名]
# 或者: from SdA import pretraining_functions [as 別名]
class Tardy(object):
def __init__(self):
"""
Analyse lateness data and make predications
"""
self.Loaded = namedtuple('Loaded', 'columnMap data')
# self.log = Log("Tardy", None, None)
self.logger = logging.getLogger('Tardy')
def loadData(self, filename):
new_path = os.path.join(
os.path.split(__file__)[0],
"..", "..",
"data",
filename
)
extract = ["fragmentOrderProduct", "earlyByHours"]
with open(new_path, 'rb') as csvfile:
reader = csv.reader(csvfile)
firstLine = reader.next()
columnMap = dict(zip(iter(firstLine),itertools.count()))
data = []
for i in reader:
row = []
for j in extract:
row.append(i[columnMap[j]])
data.append(row)
return self.Loaded (columnMap, data)
def vectoriseData(self, loaded):
f = FuzzyStringDict()
# Identify ahead to make vectors same size
for i in loaded.data:
f.identify(i[0])
# Transform
self.data = [[f.toVector(i[0]),i[1]] for i in loaded.data]
self.logger.debug("Loaded %d training items" % (len(self.data)))
self.train_set_x = tensor.as_tensor_variable([i[0] for i in self.data], name='train_x')
self.fuzzyDict = f
return self.Loaded (loaded.columnMap, self.data)
def buildFirstLayer(self, loaded):
numpy_rng = numpy.random.RandomState(89677)
self.logger.debug('... building the model')
# construct the stacked denoising autoencoder class
self.sda = SdA(
numpy_rng = numpy_rng,
n_ins = len(self.fuzzyDict),
hidden_layers_sizes = [len(self.fuzzyDict)*1]*2,
n_outs = math.sqrt(len(self.fuzzyDict))
)
def trainFirstLayer(self):
batch_size = 1
self.logger.debug('... getting the pretraining functions')
pretraining_fns = self.sda.pretraining_functions(train_set_x=self.train_set_x,
batch_size=batch_size)
self.logger.debug('... pre-training the model')
start_time = timeit.default_timer()
## Pre-train layer-wise
corruption_levels = [.2] * 6
pretraining_epochs = 3
pretrain_lr = 0.1
# compute number of minibatches for training, validation and testing
n_train_batches = len(self.data) #self.train_set_x.get_value(borrow=True).shape[0]
n_train_batches /= batch_size
for i in xrange(self.sda.n_layers):
# go through pretraining epochs
for epoch in xrange(pretraining_epochs):
# go through the training set
c = []
for batch_index in xrange(n_train_batches):
c.append(pretraining_fns[i](index=batch_index,
corruption=corruption_levels[i],
lr=pretrain_lr))
self.logger.debug('Pre-training layer %i with %i batches, epoch %d, cost ' % (i, n_train_batches, epoch))
self.logger.debug(numpy.mean(c))