本文整理匯總了Python中SdA類的典型用法代碼示例。如果您正苦於以下問題:Python SdA類的具體用法?Python SdA怎麽用?Python SdA使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了SdA類的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: buildFirstLayer
def buildFirstLayer(self, loaded):
numpy_rng = numpy.random.RandomState(89677)
self.logger.debug('... building the model')
# construct the stacked denoising autoencoder class
self.sda = SdA(
numpy_rng = numpy_rng,
n_ins = len(self.fuzzyDict),
hidden_layers_sizes = [len(self.fuzzyDict)*1]*2,
n_outs = math.sqrt(len(self.fuzzyDict))
)
示例2: test_SdA
def test_SdA(finetune_lr=0.1, pretraining_epochs=1,
pretrain_lr=0.001, training_epochs=1,
b_patch_filename = 'b_10_Training_patches_norm.npy', b_groundtruth_filename = 'b_Training_labels_norm.npy',
b_valid_filename = 'b_10_Validation_patches_norm.npy', b_validtruth_filename = 'b_Validation_labels_norm.npy',
u_patch_filename = 'u_10_Training_patches_norm.npy', u_groundtruth_filename = 'u_Training_labels_norm.npy',
u_valid_filename = 'u_10_Validation_patches_norm.npy', u_validtruth_filename = 'u_Validation_labels_norm.npy',
batch_size=100, n_ins = 605, n_outs = 2, hidden_layers_sizes = [1000,1000,1000],prefix = '11_11_3_G4_', corruption_levels=[0.2,0.2,0.2] ):
"""
Demonstrates how to train and test a stochastic denoising autoencoder.
This is demonstrated on MNIST.
:type learning_rate: float
:param learning_rate: learning rate used in the finetune stage
(factor for the stochastic gradient)
:type pretraining_epochs: int
:param pretraining_epochs: number of epoch to do pretraining
:type pretrain_lr: float
:param pretrain_lr: learning rate to be used during pre-training
:type n_iter: int
:param n_iter: maximal number of iterations to run the optimizer
:type dataset: string
:param dataset: path the the pickled dataset
"""
print '###########################'
print 'Pretraining epochs: ', pretraining_epochs
print 'Finetuning epochs: ', training_epochs
print '###########################'
W = []
b = []
#########################################################
#########################################################
resumeTraining = False
#@@@@@@@@ Needs to be worked on @@@@@@@@@@@@@@@@@
# Snippet to resume training if the program crashes halfway through #
opts, arg = getopt.getopt(sys.argv[1:],"rp:")
for opt, arg in opts:
if opt == '-r':
resumeTraining = True # make this true to resume training from saved model
elif opt == '-p':
prefix = arg
flagValue = 1
if(resumeTraining):
flagFile = file(prefix+'flag.pkl','rb')
try:
flagValue = cPickle.load(flagFile)
except:
pass
savedModel_preTraining = file(prefix+'pre_training.pkl','rb')
genVariables_preTraining = cPickle.load(savedModel_preTraining)
layer_number, epochs_done_preTraining, mean_cost , pretrain_lr = genVariables_preTraining
epoch_flag = 1
print 'Inside resumeTraining!!!!!!!!!!!!!!!!!!'
no_of_layers = len(hidden_layers_sizes) + 1
for i in xrange(no_of_layers):
try:
W.append(cPickle.load(savedModel_preTraining))
b.append(cPickle.load(savedModel_preTraining))
except:
W.append(None)
b.append(None)
if flagValue is 2:
epochFlag_fineTuning = 1
iterFlag = 1
savedModel_fineTuning = file(prefix+'fine_tuning.pkl','rb')
hidden_layers_sizes = cPickle.load(savedModel_fineTuning)
genVariables_fineTuning = cPickle.load(savedModel_fineTuning)
epochs_done_fineTuning,best_validation_loss,finetune_lr,patience,iters_done = genVariables_fineTuning
else:
layer_number, epochs_done, mean_cost, pretrain_lr = [0,0,0,pretrain_lr]
epoch_flag = 0
epochFlag_fineTuning = 0
iterFlag = 0
W = None
b = None
##############################################################
##############################################################
#.........這裏部分代碼省略.........
示例3: test_SdA
def test_SdA():
SdA.test_SdA(pretraining_epochs=1, training_epochs=1, batch_size=300)
示例4:
filename=data_dir + "GM12878_200bp_Data_3Cl_l2normalized_TestSet.txt";
test_set_x_org=numpy.loadtxt(filename,delimiter='\t',dtype='float32')
filename=data_dir + "GM12878_200bp_Classes_3Cl_l2normalized_TestSet.txt";
test_set_y_org=numpy.loadtxt(filename,delimiter='\t',dtype=object)
prev,test_set_y_org=cl.change_class_labels(test_set_y_org)
filename=data_dir + "GM12878_Features_Unique.txt";
features=numpy.loadtxt(filename,delimiter='\t',dtype=object)
rng=numpy.random.RandomState(1000)
# train
classifier,training_time=SdA.train_model(train_set_x_org=train_set_x_org, train_set_y_org=train_set_y_org,
valid_set_x_org=valid_set_x_org, valid_set_y_org=valid_set_y_org,
pretrain_lr=0.1,finetune_lr=0.1, alpha=0.01,
lambda_reg=0.00005, alpha_reg=0.5,
n_hidden=[64,64,32], corruption_levels=[0.01,0.01,0.01],
pretraining_epochs=5, training_epochs=1000,
batch_size=200, rng=rng)
# test
test_set_y_pred,test_set_y_pred_prob,test_time=SdA.test_model(classifier, test_set_x_org, batch_size=200)
print test_set_y_pred[0:20]
print test_set_y_pred_prob[0:20]
print test_time
# evaluate classification performance
perf,conf_mat=cl.perform(test_set_y_org,test_set_y_pred,numpy.unique(train_set_y_org))
print perf
print conf_mat
示例5: test_SdA
def test_SdA():
t0=time.time()
SdA.test_SdA(pretraining_epochs = 2, training_epochs = 3, batch_size = 300)
print >> sys.stderr, "test_SdA took %.3fs expected 971s in our buildbot"%(time.time()-t0)
示例6: test_SdA
def test_SdA(finetune_lr=0.1, pretraining_epochs=1,
pretrain_lr=0.001, training_epochs=1,
b_patch_filename = 'b_Training_patches_norm.npy', b_groundtruth_filename = 'b_Training_labels_norm.npy',
b_valid_filename = 'b_Validation_patches_norm.npy', b_validtruth_filename = 'b_Validation_labels_norm.npy',
u_patch_filename = 'u_Training_patches_norm.npy', u_groundtruth_filename = 'u_Training_labels_norm.npy',
u_valid_filename = 'u_Validation_patches_norm.npy', u_validtruth_filename = 'u_Validation_labels_norm.npy',
batch_size=100, n_ins = 605, n_outs = 5, hidden_layers_sizes = [1000,1000,1000],prefix = '11_11_3_G4_', corruption_levels=[0.2,0.2,0.2], resumeTraining = False, StopAtPretraining = False):
"""
Demonstrates how to train and test a stochastic denoising autoencoder.
This is demonstrated on MNIST.
:type learning_rate: float
:param learning_rate: learning rate used in the finetune stage
(factor for the stochastic gradient)
:type pretraining_epochs: int
:param pretraining_epochs: number of epoch to do pretraining
:type pretrain_lr: float
:param pretrain_lr: learning rate to be used during pre-training
:type n_iter: int
:param n_iter: maximal number of iterations to run the optimizer
:type dataset: string
:param dataset: path the the pickled dataset
"""
print '###########################'
print 'Pretraining epochs: ', pretraining_epochs
print 'Finetuning epochs: ', training_epochs
print '###########################'
W = []
b = []
#########################################################
#########################################################
#@@@@@@@@ Needs to be worked on @@@@@@@@@@@@@@@@@
# Snippet to resume training if the program crashes halfway through #
opts, arg = getopt.getopt(sys.argv[1:],"rp:")
for opt, arg in opts:
if opt == '-r':
resumeTraining = True # make this true to resume training from saved model
elif opt == '-p':
prefix = arg
flag = 0
if(resumeTraining):
flag = 1
path = '/media/brain/1A34723D34721BC7/BRATS/codes/results/test_255_9x9x3/9x9x3pre_training.pkl'
savedModel_preTraining = file(path,'rb')
genVariables_preTraining = cPickle.load(savedModel_preTraining)
layer_number, epochs_done_preTraining, mean_cost , pretrain_lr = genVariables_preTraining
epoch_flag = 1
print 'Inside resumeTraining!!!!!!!!!!!!!!!!!!'
no_of_layers = len(hidden_layers_sizes) + 1
for i in xrange(no_of_layers):
W.append(cPickle.load(savedModel_preTraining))
b.append(cPickle.load(savedModel_preTraining))
##############################################################
##############################################################
if flag == 0:
datasets = load_data(b_patch_filename,b_groundtruth_filename,b_valid_filename,b_validtruth_filename)
train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
# compute number of minibatches for training, validation and testing
n_train_batches = train_set_x.get_value(borrow=True).shape[0]
n_train_batches /= batch_size
# numpy random generator
# start-snippet-3
numpy_rng = numpy.random.RandomState(89677)
print '... building the model'
# print 'W: ', W
# print 'b: ', b
################################################################
################CONSTRUCTION OF SdA CLASS#######################
sda = SdA(
numpy_rng=numpy_rng,
n_ins=n_ins,
#.........這裏部分代碼省略.........
示例7: test_SdA
def test_SdA():
SdA.test_SdA(pretraining_epochs = 2, training_epochs = 3)
示例8:
pretrain_lr=0.1
finetune_lr=0.1
alpha=0.1
lambda_reg=0.00005
alpha_reg=0.5
n_hidden=[256,128,64]
corruption_levels=[0.01,0.01,0.01]
pretraining_epochs=5
training_epochs=1000
batch_size=100
# train, and extract features from training set
classifier,training_time=SdA.train_model(train_set_x_org=train_set_x_org, train_set_y_org=train_set_y_org,
valid_set_x_org=valid_set_x_org, valid_set_y_org=valid_set_y_org,
pretrain_lr=pretrain_lr,finetune_lr=finetune_lr, alpha=alpha,
lambda_reg=lambda_reg, alpha_reg=alpha_reg,
n_hidden=n_hidden, corruption_levels=corruption_levels,
pretraining_epochs=pretraining_epochs, training_epochs=training_epochs,
batch_size=batch_size, rng=rng)
# test the classifier
test_set_y_pred,test_set_y_pred_prob,test_time=SdA.test_model(classifier, test_set_x_org, batch_size=200)
# evaluate classification performance
perf_i,conf_mat_i=cl.perform(test_set_y_org,test_set_y_pred,numpy.unique(train_set_y_org))
print perf_i
print conf_mat_i
if i==0:
perf=perf_i
conf_mat=conf_mat_i
training_times=training_time
示例9: Tardy
class Tardy(object):
def __init__(self):
"""
Analyse lateness data and make predications
"""
self.Loaded = namedtuple('Loaded', 'columnMap data')
# self.log = Log("Tardy", None, None)
self.logger = logging.getLogger('Tardy')
def loadData(self, filename):
new_path = os.path.join(
os.path.split(__file__)[0],
"..", "..",
"data",
filename
)
extract = ["fragmentOrderProduct", "earlyByHours"]
with open(new_path, 'rb') as csvfile:
reader = csv.reader(csvfile)
firstLine = reader.next()
columnMap = dict(zip(iter(firstLine),itertools.count()))
data = []
for i in reader:
row = []
for j in extract:
row.append(i[columnMap[j]])
data.append(row)
return self.Loaded (columnMap, data)
def vectoriseData(self, loaded):
f = FuzzyStringDict()
# Identify ahead to make vectors same size
for i in loaded.data:
f.identify(i[0])
# Transform
self.data = [[f.toVector(i[0]),i[1]] for i in loaded.data]
self.logger.debug("Loaded %d training items" % (len(self.data)))
self.train_set_x = tensor.as_tensor_variable([i[0] for i in self.data], name='train_x')
self.fuzzyDict = f
return self.Loaded (loaded.columnMap, self.data)
def buildFirstLayer(self, loaded):
numpy_rng = numpy.random.RandomState(89677)
self.logger.debug('... building the model')
# construct the stacked denoising autoencoder class
self.sda = SdA(
numpy_rng = numpy_rng,
n_ins = len(self.fuzzyDict),
hidden_layers_sizes = [len(self.fuzzyDict)*1]*2,
n_outs = math.sqrt(len(self.fuzzyDict))
)
def trainFirstLayer(self):
batch_size = 1
self.logger.debug('... getting the pretraining functions')
pretraining_fns = self.sda.pretraining_functions(train_set_x=self.train_set_x,
batch_size=batch_size)
self.logger.debug('... pre-training the model')
start_time = timeit.default_timer()
## Pre-train layer-wise
corruption_levels = [.2] * 6
pretraining_epochs = 3
pretrain_lr = 0.1
# compute number of minibatches for training, validation and testing
n_train_batches = len(self.data) #self.train_set_x.get_value(borrow=True).shape[0]
n_train_batches /= batch_size
for i in xrange(self.sda.n_layers):
# go through pretraining epochs
for epoch in xrange(pretraining_epochs):
# go through the training set
c = []
for batch_index in xrange(n_train_batches):
c.append(pretraining_fns[i](index=batch_index,
corruption=corruption_levels[i],
lr=pretrain_lr))
self.logger.debug('Pre-training layer %i with %i batches, epoch %d, cost ' % (i, n_train_batches, epoch))
self.logger.debug(numpy.mean(c))