本文整理匯總了Python中SdA.build_finetune_functions方法的典型用法代碼示例。如果您正苦於以下問題:Python SdA.build_finetune_functions方法的具體用法?Python SdA.build_finetune_functions怎麽用?Python SdA.build_finetune_functions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類SdA
的用法示例。
在下文中一共展示了SdA.build_finetune_functions方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_SdA
# 需要導入模塊: import SdA [as 別名]
# 或者: from SdA import build_finetune_functions [as 別名]
#.........這裏部分代碼省略.........
pretrain_log_file = open(prefix + 'log_pretrain_cost.txt', "a")
for l in log_pretrain_cost:
pretrain_log_file.write("%f\n"%l)
pretrain_log_file.close()
#print sda.params[0]
end_time = time.clock()
print >> sys.stderr, ('The pretraining code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.))
# end-snippet-4
########################
# FINETUNING THE MODEL #
########################
# get the training, validation and testing function for the model
datasets = load_data(u_patch_filename,u_groundtruth_filename,u_valid_filename,u_validtruth_filename)
train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
n_train_batches = train_set_x.get_value(borrow=True).shape[0]
n_train_batches /= batch_size
print '... getting the finetuning functions'
train_fn, validate_model, test_model = sda.build_finetune_functions(datasets=datasets,batch_size=100,learning_rate=0.1)
print '... finetunning the model'
# early-stopping parameters
patience = 10 * n_train_batches # look as this many examples regardless
patience_increase = 2. # wait this much longer when a new best is
# found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience / 2)
# go through this many
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch
best_validation_loss = numpy.inf
test_score = 0.
start_time = time.clock()
done_looping = False
epoch = 0
flag = open(prefix+'flag.pkl','wb')
cPickle.dump(2,flag, protocol = cPickle.HIGHEST_PROTOCOL)
flag.close()
log_valid_cost=[]
while (epoch < training_epochs) and (not done_looping):
if epochFlag_fineTuning is 1 and epoch < epochs_done_fineTuning:
epoch = epochs_done_fineTuning
epochFlag_fineTuning = 0
示例2: test_SdA
# 需要導入模塊: import SdA [as 別名]
# 或者: from SdA import build_finetune_functions [as 別名]
#.........這裏部分代碼省略.........
# get the training, validation and testing function for the model
if flag == 1:
datasets = load_data(u_patch_filename,u_groundtruth_filename,u_valid_filename,u_validtruth_filename)
train_set_x, train_set_y = datasets[0]
valid_set_x, valid_set_y = datasets[1]
test_set_x, test_set_y = datasets[2]
n_train_batches = train_set_x.get_value(borrow=True).shape[0]
n_train_batches /= batch_size
numpy_rng = numpy.random.RandomState(89677)
print '... building the model'
# print 'W: ', W
# print 'b: ', b
################################################################
################CONSTRUCTION OF SdA CLASS#######################
sda = SdA(
numpy_rng=numpy_rng,
n_ins=n_ins,
hidden_layers_sizes=hidden_layers_sizes,
n_outs=n_outs, W = W, b = b)
print 'SdA constructed'
if StopAtPretraining == False:
print '... getting the finetuning functions'
train_fn, validate_model, test_model = sda.build_finetune_functions(datasets=datasets,batch_size=batch_size)
print batch_size
print '... finetunning the model'
########################confusion matrix Block 1##########################
prediction = sda.get_prediction(train_set_x,batch_size)
y_truth = np.load(u_groundtruth_filename)
y_truth = y_truth[0:(len(y_truth)-(len(y_truth)%batch_size))]
cnf_freq = 1
##################################################################
# early-stopping parameters
patience = 40 * n_train_batches # look as this many examples regardless
patience_increase = 10. # wait this much longer when a new best is
# found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience / 2)
# go through this many
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch
best_validation_loss = numpy.inf
test_score = 0.
start_time = time.clock()
finetune_lr_initial = finetune_lr
done_looping = False
epoch = 0
flag = open(prefix+'flag.pkl','wb')
cPickle.dump(2,flag, protocol = cPickle.HIGHEST_PROTOCOL)
flag.close()