本文整理匯總了Python中MCUtils.area方法的典型用法代碼示例。如果您正苦於以下問題:Python MCUtils.area方法的具體用法?Python MCUtils.area怎麽用?Python MCUtils.area使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類MCUtils
的用法示例。
在下文中一共展示了MCUtils.area方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: sigmaclip_bg
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import area [as 別名]
def sigmaclip_bg(data,radius,annulus,skypos,maxiter=10,sigmaclip=3.,
gausslim=50.,verbose=0,pixsz=0.000416666666666667):
"""Produce an estimate of background counts within an aperture (radius)
using a sigma clipping method for extracting the background from an
annulus.
This attempts to reproduce the calcuations of the backcalc() function in
mapaps/poissonbg.c of the mission pipeline. (Probably written by Ted Wyder.)
"""
# FIXME: Does not apply response!
# This cut is now handled by the ugly loop below, which barely dodges a
# conceptula issue about fractional pixels...
#ix = np.where((d>annulus[0]) & (d<annulus[1]))
imsz=gxt.deg2pix(skypos,[annulus[1]*2,annulus[1]*2])
wcs=define_wcs(skypos,[annulus[1]*2,annulus[1]*2])
foc_ra,foc_dec=wcs.sip_pix2foc(wcs.wcs_world2pix(data['ra'],data['dec'],1),1)
H,xedges,yedges=np.histogram2d(foc_ra-0.5,foc_dec-0.5,bins=imsz,
range=([ [0,imsz[0]],[0,imsz[1]]]))
# Convert Gaussian sigma to a probability
problim = 0.5*scipy.special.erfc(sigmaclip/np.sqrt(2.0))
# Mask out non-annulus regions... there's probalby a more pythonic way
bgimg=np.copy(H)
for i in range(H.shape[0]):
for j in range(H.shape[1]):
# Add a little buffer to account for pixel widths?
# FIXME? including everything within the annulus...
# if (mc.distance(H.shape[0]/2.,H.shape[1]/2.,i,j)<annulus[0]/pixsz or
if mc.distance(H.shape[0]/2.,H.shape[1]/2.,i,j)>annulus[1]/pixsz:#):
bgimg[i,j]=-1
ix=np.where(bgimg>=0)
m,s=bgimg[ix].mean(),bgimg[ix].std()
d = 1.
for i in range(maxiter):
if d<=10e-5 or m<2:
continue
if m>=gausslim:
# Mask anything outside of 3 sigma from the mean (of unmasked data)
klim=m+sigmaclip*np.sqrt(m)#s
klo=m-sigmaclip*np.sqrt(m)#s
if verbose:
print 'Gaussian cut: {klo} to {klim}'.format(klo=klo,klim=klim)
else:
klim = scipy.special.gammainccinv(m,problim)
klo = -1 # None
if verbose:
print 'Poisson cut: {klo} to {klim}'.format(klo=klo,klim=klim)
ix = np.where((bgimg>=klim) | (bgimg<=klo))
bgimg[ix]=-1
ix=np.where(bgimg>=0)
d = np.abs((bgimg[ix].mean()-m)/m)# - 1)
m,s=bgimg[ix].mean(),bgimg[ix].std()
ix = np.where(bgimg>=0)
return mc.area(radius)*bgimg[ix].mean()/mc.area(pixsz)
示例2: error
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import area [as 別名]
def error(data,band,radius,annulus):
N_a = 1
N_b0 = (mc.area(annulus[1])-mc.area(annulus[0]))/mc.area(radius)
N_b = data[band]['bg_eff_area']/mc.area(radius)
B0 = data[band]['bg']
B = data[band]['bg_cheese']
S = gt.mag2counts(data[band]['mag'],band)*data[band]['t_eff']
s2 = {'bg_cheese_err':(S-B)+(N_a+(N_a**2.)/N_b),
'bg_err':(S-B0)+(N_a+(N_a**2.)/N_b0)}
return s2
示例3: cheese_bg_area
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import area [as 別名]
def cheese_bg_area(band,ra0,dec0,annulus,sources,nsamples=10e5,ntests=10):
# This is just a really naive Monte Carlo
ratios = np.zeros(ntests)
for i in range(ntests):
ann_events = bg_mask_annulus(band,ra0,dec0,annulus,
np.random.uniform(ra0-annulus[1],ra0+annulus[1],int(nsamples)),
np.random.uniform(dec0-annulus[1],dec0+annulus[1],int(nsamples)),
np.ones(nsamples))
mask_events= bg_mask_sources(band,ra0,dec0,
ann_events[0],ann_events[1],ann_events[2],sources)
try:
ratios[i] = float(mask_events[2].sum())/float(ann_events[2].sum())
except ZeroDivisionError:
ratios[i] = 0.
return (mc.area(annulus[1])-mc.area(annulus[0]))*ratios.mean()
示例4: gphot_params
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import area [as 別名]
def gphot_params(band,skypos,radius,annulus=None,
verbose=0.,detsize=1.25,stepsz=None,
trange=None,maskdepth=None,maskradius=None):
"""Populate a dict() with parameters that are constant over all bins."""
return {'band':band,'ra0':skypos[0],'dec0':skypos[1],'skypos':skypos,
'trange':trange,'radius':radius,'annulus':annulus,
'stepsz':stepsz,'verbose':verbose,
'maskdepth':maskdepth,'maskradius':maskradius,'detsize':detsize,
'apcorrect1':gxt.apcorrect1(radius,band),
'apcorrect2':gxt.apcorrect2(radius,band),
'detbg':gxt.detbg(mc.area(radius),band)}
示例5: cheese_bg
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import area [as 別名]
def cheese_bg(band,ra0,dec0,radius,annulus,ras,decs,responses,maskdepth=20.,
maskradius=1.5,eff_area=False,sources=False):
""" Returns the estimate number of counts (not count rate) within the
aperture based upon a masked background annulus.
"""
if not sources:
sources = bg_sources(band,ra0,dec0,annulus[1],maskdepth=maskdepth)
bg_counts = bg_mask(band,ra0,dec0,annulus,ras,decs,responses,
sources)[2].sum()
if not eff_area:
eff_area = cheese_bg_area(band,ra0,dec0,annulus,sources)
return mc.area(radius)*bg_counts/eff_area if eff_area else 0.
示例6: quickmag
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import area [as 別名]
def quickmag(band, ra0, dec0, tranges, radius, annulus=None, data={},
stepsz=None, verbose=0, maskdepth=20.0,
maskradius=1.5,detsize=1.25,coadd=False, photonfile=None):
if verbose:
mc.print_inline("Retrieving all of the target events.")
trange = [np.array(tranges).min(),np.array(tranges).max()]
try:
searchradius = annulus[1]
except TypeError:
searchradius = radius
data = pullphotons(band, ra0, dec0, tranges, searchradius,
verbose=verbose, photonfile=photonfile)
if verbose:
mc.print_inline("Isolating source from background.")
angSep = mc.angularSeparation(ra0, dec0, data['ra'], data['dec'])
if verbose:
mc.print_inline("Binning data according to requested depth.")
# Multiple ways of defining bins
if coadd:
bins = np.array(trange)
elif stepsz:
bins = np.append(np.arange(min(trange), max(trange), stepsz),
max(trange))
else:
bins = np.unique(np.array(tranges).flatten())
# This is equivalent in function to np.digitize(data['t'],bins) except
# that it's much, much faster. See numpy issue #2656.
ix = np.searchsorted(bins,data['t'],"right")
# Initialize histogrammed arrays
# FIXME: allocate these from a dict of constructors
lcurve_cols = ['counts', 'sources', 'bg_counts','responses',
'detxs', 'detys', 't0_data', 't1_data', 't_mean', 'racent',
'deccent']
lcurve = {'params':gphot_params(band,[ra0,dec0],radius,annulus=annulus,
verbose=verbose,
detsize=detsize,stepsz=stepsz,
trange=trange,maskdepth=maskdepth,
maskradius=maskradius)}
for col in lcurve_cols:
lcurve[col] = np.zeros(len(bins)-1)
# FIXME: Bottleneck. There's probably a way to do this without looping.
# Don't bother looping through anything with no data.
lcurve['bg'] = {'simple':np.zeros(len(bins)-1),
'cheese':np.zeros(len(bins)-1)}
if annulus is not None:
lcurve['bg']['sources'] = bg_sources(band,ra0,dec0,annulus[1],
maskdepth=maskdepth)
lcurve['bg']['eff_area'] = cheese_bg_area(band,ra0,dec0,annulus,
lcurve['bg']['sources'])
else:
lcurve['bg']['sources'] = None
lcurve['bg']['eff_area'] = 0.
if verbose:
mc.print_inline("Populating histograms.")
for cnt,i in enumerate(np.unique(ix)):
# Exclude data outside of the bins in searchsorted.
if i-1<0 or i==len(bins):
continue
if verbose:
mc.print_inline('Binning {i} of {l}.'.format(
i=cnt,l=len(np.unique(ix))))
t_ix = np.where(ix==i)
# TODO: Optionally limit data to specific parts of detector.
rad_ix = np.where((angSep <= radius) & (ix == i))
# NOTE: This checks for the dim edge case where you have photons in
# the annulus but not in the aperture.
if not len(rad_ix[0]):
continue
lcurve['t0_data'][i-1] = data['t'][rad_ix].min()
lcurve['t1_data'][i-1] = data['t'][rad_ix].max()
lcurve['t_mean'][i-1] = data['t'][rad_ix].mean()
lcurve['counts'][i-1] = len(rad_ix[0])
lcurve['sources'][i-1] = (1./data['response'][rad_ix]).sum()
lcurve['responses'][i-1] = data['response'][rad_ix].mean()
lcurve['detxs'][i-1] = data['col'][rad_ix].mean()
lcurve['detys'][i-1] = data['row'][rad_ix].mean()
lcurve['racent'][i-1] = data['ra'][rad_ix].mean()
lcurve['deccent'][i-1] = data['dec'][rad_ix].mean()
if annulus is not None:
ann_ix = np.where((angSep > annulus[0]) &
(angSep <= annulus[1]) & (ix == i))
lcurve['bg_counts'][i-1] = len(ann_ix[0])
# Background is reported as counts within the aperture
lcurve['bg']['simple'][i-1] = (mc.area(radius) *
(1./data['response'][ann_ix]).sum() /
(mc.area(annulus[1])-mc.area(annulus[0])))
lcurve['bg']['cheese'][i-1] = cheese_bg(band, ra0, dec0, radius,
annulus, data['ra'][t_ix], data['dec'][t_ix],
data['response'][t_ix], maskdepth=maskdepth,
eff_area=lcurve['bg']['eff_area'],
sources=lcurve['bg']['sources'])
else:
lcurve['bg_counts'][i-1]=0.
lcurve['bg']['simple'][i-1]=0.
lcurve['bg']['cheese'][i-1]=0.
# Only return bins that contain data.
ix = np.where((np.isfinite(lcurve['sources'])) &
(np.array(lcurve['sources']) > 0))
lcurve['t0'] = bins[ix]
lcurve['t1'] = bins[ix[0]+1]
#.........這裏部分代碼省略.........
示例7:
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import area [as 別名]
data[band] = pd.read_csv('{base}{band}.csv'.format(
base=base,band=band))
print '{band} sources: {cnt}'.format(
band=band,cnt=data[band]['objid'].shape[0])
"""dMag vs. Mag"""
for band in bands:
dmag = {'gphot_cheese':(lambda band:
data[band]['aper4']-data[band]['mag_bgsub_cheese']),
'gphot_nomask':(lambda band:
data[band]['aper4']-data[band]['mag_bgsub']),
'gphot_sigma':(lambda band:
data[band]['aper4']-data[band]['mag_bgsub_sigmaclip']),
'mcat':lambda band: data[band]['aper4']-
gt.counts2mag(gt.mag2counts(data[band]['mag'],band)-
data[band]['skybg']*3600**2*mc.area(gt.aper2deg(4)),
band)}
bgmodekeys={'gphot_cheese':'mag_bgsub_cheese',
'gphot_nomask':'mag_bgsub',
'gphot_sigma':'mag_bgsub_sigmaclip',
'mcat':'skybg'}
for bgmode in dmag.keys():
for band in bands:
fig = plt.figure(figsize=(8*scl,4*scl))
fig.subplots_adjust(left=0.12,right=0.95,wspace=0.02,
bottom=0.15,top=0.9)
dmag_err=gu.dmag_errors(100.,band,sigma=1.41)
# Make a cut on crazy outliers in the MCAT. Also on det radius and expt.
ix = ((data[band]['aper4']>0) & (data[band]['aper4']<30) &
(data[band]['distance']<300) & (data[band]['t_eff']<300) &
(np.isfinite(np.array(data[band][bgmodekeys[bgmode]]))))