本文整理匯總了Python中MCUtils類的典型用法代碼示例。如果您正苦於以下問題:Python MCUtils類的具體用法?Python MCUtils怎麽用?Python MCUtils使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了MCUtils類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: movie
def movie(band,skypos,tranges,skyrange,framesz=0,width=False,height=False,
verbose=0,memlight=False,coadd=False,response=False,hdu=False,retries=20,
detsize=1.1):
"""Generate a movie (mov)."""
# Not defining stepsz creates a single full depth image.
print tranges
if coadd or (len(tranges)==1 and not framesz) or (not len(tranges)):
if verbose>2:
print 'Coadding across '+str(tranges)
mv = integrate_map(band,skypos,tranges,skyrange,width=width,
height=height,verbose=verbose,memlight=memlight,hdu=hdu,
retries=retries,response=response,detsize=detsize)
else:
for trange in tranges:
stepsz = framesz if framesz else trange[1]-trange[0]
steps = np.ceil((trange[1]-trange[0])/stepsz)
for i,t0 in enumerate(np.arange(trange[0],trange[1],stepsz)):
if verbose>1:
mc.print_inline('Movie frame '+str(i+1)+' of '+
str(int(steps)))
t1 = trange[1] if i==steps else t0+stepsz
img = integrate_map(band,skypos,[[t0,t1]],skyrange,
width=width,height=height,verbose=verbose,
memlight=memlight,hdu=hdu,retries=retries,
response=response,detsize=detsize)
if img.min() == 0 and img.max() == 0:
if verbose>1:
print 'No data in frame {i}. Skipping...'.format(i=i)
continue
try:
mv.append(img)
except:
mv = [img]
return np.array(mv)
示例2: pullphotons
def pullphotons(band, ra0, dec0, tranges, radius, events={}, verbose=0,
tscale=1000., calpath='../cal/', chunksz=10e6):
"""Retrieve photons within an aperture from the database."""
events = {'t':[],'ra':[],'dec':[],'xi':[],'eta':[]}
if verbose:
print "Retrieving photons at ["+str(ra0)+", "+str(dec0)+"] within a radius of "+str(radius)
for trange in tranges:
if verbose:
mc.print_inline(" and between "+str(trange[0])+" and "+
str(trange[1])+".")
stream = gQuery.getArray(
gQuery.allphotons(band, ra0, dec0, trange[0], trange[1], radius),
verbose=verbose,retries=100)
if not stream:
continue
events['t'] = events['t']+np.array(np.array(stream,
dtype='float64')[:,0]/tscale).tolist()
# The float64 precision _is_ significant for RA / Dec.
events['ra'] = events['ra']+np.array(np.array(stream,
dtype='float64')[:,1]).tolist()
events['dec'] = events['dec']+np.array(np.array(stream,
dtype='float64')[:,2]).tolist()
events['xi'] = events['xi']+np.array(np.array(stream,
dtype='float32')[:,3]).tolist()
events['eta'] = events['eta']+np.array(np.array(stream,
dtype='float32')[:,4]).tolist()
events['t'] = np.array(events['t'],dtype='float64')
events['ra'] = np.array(events['ra'],dtype='float64')
events['dec'] = np.array(events['dec'],dtype='float64')
events['xi'] = np.array(events['xi'],dtype='float32')
events['eta'] = np.array(events['eta'],dtype='float32')
events = hashresponse(band, events, calpath=calpath, verbose=verbose)
return events
示例3: integrate_map
def integrate_map(band,skypos,tranges,skyrange,width=False,height=False,
verbose=0,memlight=False,hdu=False,retries=20,response=False,
detsize=1.1):
""" Integrate an image over some number of time ranges. Use a reduced
memory optimization (at the expense of more web queries) if requested.
"""
imsz = gxt.deg2pix(skypos,skyrange)
img = np.zeros(imsz)
for trange in tranges:
# If memlight is requested, break the integration into
# smaller chunks.
# FIXME: memlight gives slightly wrong answers right now
# This is probably due to a quirk of SQL, per issue #140.
# Deprecating memlight until this can be resolved.
step = memlight if memlight else trange[1]-trange[0]
for i in np.arange(trange[0],trange[1],step):
t0,t1=i,i+step
if verbose:
mc.print_inline('Coadding '+str(t0)+' to '+str(t1))
img += makemap(band,skypos,[t0,t1],skyrange,response=response,
verbose=verbose,detsize=detsize)
if response: # This is an intensity map.
img /= dbt.compute_exptime(band,trange,skypos=skypos,
verbose=verbose)
return img
示例4: fits_header
def fits_header(band,skypos,tranges,skyrange,width=False,height=False,
verbose=0,hdu=False,retries=20):
"""Populate a FITS header."""
if verbose:
mc.print_inline('Populating FITS header.')
hdu = hdu if hdu else pyfits.PrimaryHDU()
wcs = define_wcs(skypos,skyrange,width=width,height=height)
hdu.header['CDELT1'],hdu.header['CDELT2'] = wcs.wcs.cdelt
hdu.header['CTYPE1'],hdu.header['CTYPE2'] = wcs.wcs.ctype
hdu.header['CRPIX1'],hdu.header['CRPIX2'] = wcs.wcs.crpix
hdu.header['CRVAL1'],hdu.header['CRVAL2'] = wcs.wcs.crval
#hdu.header['RA_CENT'],hdu.header['DEC_CENT'] = wcs.wcs.crval # Dupe.
hdu.header['EQUINOX'],hdu.header['EPOCH'] = 2000., 2000.
hdu.header['BAND'] = 1 if band=='NUV' else 2
hdu.header['VERSION'] = 'v{v}'.format(v=__version__)
# Do we want to set the following?
#hdu.header['OW'] = 1
#hdu.header['DIRECT'] = 1
#hdu.header['GRISM'] = 0
#hdu.header['OPAQUE'] = 0
# Put the total exposure time into the primary header
hdu.header['EXPTIME'] = 0.
for trange in tranges:
hdu.header['EXPTIME'] += dbt.compute_exptime(band,trange,
verbose=verbose,retries=retries)
if len(tranges)==1:
# Put the time range into the primary header for a single frame image
hdu.header['EXPSTART'],hdu.header['EXPEND'] = tranges[0]
# These are the proper keywords for this:
hdu.header['TIME-OBS'],hdu.header['TIME-END'] = tranges[0]
return hdu
示例5: movie
def movie(band,skypos,tranges,skyrange,framesz=0,width=False,height=False,
verbose=0,memlight=False,coadd=False,response=False,hdu=False,retries=20):
"""Generate a movie (mov)."""
# Not defining stepsz creates a single full depth image.
if coadd or (len(tranges)==1 and not framesz):
if verbose>2:
print 'Coadding across '+str(tranges)
mv = integrate_map(band,skypos,tranges,skyrange,width=width,
height=height,verbose=verbose,memlight=memlight,hdu=hdu,
retries=retries,response=response)
#rr.append(rrhr(band,skypos,tranges,skyrange,response=response,width=width,height=height,stepsz=1.,verbose=verbose,hdu=hdu,retries=retries)) if response else rr.append(np.ones(np.shape(mv)[1:]))
else:
for trange in tranges:
stepsz = framesz if framesz else trange[1]-trange[0]
steps = np.ceil((trange[1]-trange[0])/stepsz)
for i,t0 in enumerate(np.arange(trange[0],trange[1],stepsz)):
if verbose>1:
mc.print_inline('Movie frame '+str(i+1)+' of '+
str(int(steps)))
t1 = trange[1] if i==steps else t0+stepsz
img = integrate_map(band,skypos,[[t0,t1]],skyrange,
width=width,height=height,verbose=verbose,
memlight=memlight,hdu=hdu,retries=retries,
response=response)
try:
mv.append(img)
except:
mv = [img]
# # FIXME: This should not create an rr unless it's requested...
# rr.append(rrhr(band,skypos,[[t0,t1]],skyrange,response=response,width=width,height=height,stepsz=1.,verbose=verbose,retries=retries)) if response else rr.append(np.ones(np.shape(mv)[1:]))
return np.array(mv)
示例6: movie
def movie(band,skypos,tranges,skyrange,framesz=0,width=False,height=False,
verbose=0,memlight=False,coadd=False,
response=False,hdu=False,retries=20):
"""Generate a movie (mov)."""
# Not defining stepsz effectively creates a count map.
mv = []
rr = []
if coadd:
if verbose>2:
print 'Coadding across '+str(tranges)
mv.append(countmap(band,skypos,tranges,skyrange,width=width,
height=height,verbose=verbose,memlight=memlight,
hdu=hdu,retries=retries))
rr.append(rrhr(band,skypos,tranges,skyrange,response=response,width=width,height=height,stepsz=1.,verbose=verbose,hdu=hdu,retries=retries)) if response else rr.append(np.ones(np.shape(mv)[1:]))
else:
for trange in tranges:
stepsz = framesz if framesz else trange[1]-trange[0]
steps = np.ceil((trange[1]-trange[0])/stepsz)
for i,t0 in enumerate(np.arange(trange[0],trange[1],stepsz)):
if verbose>1:
mc.print_inline('Movie frame '+str(i+1)+' of '+
str(int(steps)))
t1 = trange[1] if i==steps else t0+stepsz
mv.append(countmap(band,skypos,[[t0,t1]],skyrange,width=width,
height=height,verbose=verbose,
memlight=memlight,hdu=hdu,retries=retries))
# FIXME: This should not create an rr unless it's requested...
rr.append(rrhr(band,skypos,[[t0,t1]],skyrange,response=response,width=width,height=height,stepsz=1.,verbose=verbose,retries=retries)) if response else rr.append(np.ones(np.shape(mv)[1:]))
return np.array(mv),np.array(rr)
示例7: sigmaclip_bg
def sigmaclip_bg(data,radius,annulus,skypos,maxiter=10,sigmaclip=3.,
gausslim=50.,verbose=0,pixsz=0.000416666666666667):
"""Produce an estimate of background counts within an aperture (radius)
using a sigma clipping method for extracting the background from an
annulus.
This attempts to reproduce the calcuations of the backcalc() function in
mapaps/poissonbg.c of the mission pipeline. (Probably written by Ted Wyder.)
"""
# FIXME: Does not apply response!
# This cut is now handled by the ugly loop below, which barely dodges a
# conceptula issue about fractional pixels...
#ix = np.where((d>annulus[0]) & (d<annulus[1]))
imsz=gxt.deg2pix(skypos,[annulus[1]*2,annulus[1]*2])
wcs=define_wcs(skypos,[annulus[1]*2,annulus[1]*2])
foc_ra,foc_dec=wcs.sip_pix2foc(wcs.wcs_world2pix(data['ra'],data['dec'],1),1)
H,xedges,yedges=np.histogram2d(foc_ra-0.5,foc_dec-0.5,bins=imsz,
range=([ [0,imsz[0]],[0,imsz[1]]]))
# Convert Gaussian sigma to a probability
problim = 0.5*scipy.special.erfc(sigmaclip/np.sqrt(2.0))
# Mask out non-annulus regions... there's probalby a more pythonic way
bgimg=np.copy(H)
for i in range(H.shape[0]):
for j in range(H.shape[1]):
# Add a little buffer to account for pixel widths?
# FIXME? including everything within the annulus...
# if (mc.distance(H.shape[0]/2.,H.shape[1]/2.,i,j)<annulus[0]/pixsz or
if mc.distance(H.shape[0]/2.,H.shape[1]/2.,i,j)>annulus[1]/pixsz:#):
bgimg[i,j]=-1
ix=np.where(bgimg>=0)
m,s=bgimg[ix].mean(),bgimg[ix].std()
d = 1.
for i in range(maxiter):
if d<=10e-5 or m<2:
continue
if m>=gausslim:
# Mask anything outside of 3 sigma from the mean (of unmasked data)
klim=m+sigmaclip*np.sqrt(m)#s
klo=m-sigmaclip*np.sqrt(m)#s
if verbose:
print 'Gaussian cut: {klo} to {klim}'.format(klo=klo,klim=klim)
else:
klim = scipy.special.gammainccinv(m,problim)
klo = -1 # None
if verbose:
print 'Poisson cut: {klo} to {klim}'.format(klo=klo,klim=klim)
ix = np.where((bgimg>=klim) | (bgimg<=klo))
bgimg[ix]=-1
ix=np.where(bgimg>=0)
d = np.abs((bgimg[ix].mean()-m)/m)# - 1)
m,s=bgimg[ix].mean(),bgimg[ix].std()
ix = np.where(bgimg>=0)
return mc.area(radius)*bgimg[ix].mean()/mc.area(pixsz)
示例8: error
def error(data,band,radius,annulus):
N_a = 1
N_b0 = (mc.area(annulus[1])-mc.area(annulus[0]))/mc.area(radius)
N_b = data[band]['bg_eff_area']/mc.area(radius)
B0 = data[band]['bg']
B = data[band]['bg_cheese']
S = gt.mag2counts(data[band]['mag'],band)*data[band]['t_eff']
s2 = {'bg_cheese_err':(S-B)+(N_a+(N_a**2.)/N_b),
'bg_err':(S-B0)+(N_a+(N_a**2.)/N_b0)}
return s2
示例9: define_wcs
def define_wcs(skypos,skyrange,width=False,height=False,verbose=0,
pixsz=0.000416666666666667):
"""Define the world coordinate system (WCS)."""
if verbose:
mc.print_inline('Defining World Coordinate System (WCS).')
wcs = pywcs.WCS(naxis=2) # NAXIS = 2
imsz = gxt.deg2pix(skypos,skyrange)
wcs.wcs.cdelt = np.array([-pixsz,pixsz])
wcs.wcs.ctype = ['RA---TAN','DEC--TAN']
wcs.wcs.crpix = [(imsz[1]/2.)+0.5,(imsz[0]/2.)+0.5]
wcs.wcs.crval = skypos
return wcs
示例10: rrhr
def rrhr(band,skypos,tranges,skyrange,width=False,height=False,stepsz=1.,
verbose=0,response=True,hdu=False,retries=20):
"""Generate a high resolution relative response (rrhr) map."""
imsz = gxt.deg2pix(skypos,skyrange)
# TODO the if width / height
flat, flatinfo = cal.flat(band)
npixx,npixy = flat.shape
fltsz = flat.shape
pixsz = flatinfo['CDELT2']
detsize = 1.25
# Rotate the flat into the correct orientation to start.
flat = np.flipud(np.rot90(flat))
# NOTE: This upsample interpolation is done _last_ in the canonical
# pipeline as part of the poissonbg.c routine.
# The interpolation function is "congrid" in the same file.
# TODO: Should this be first order interpolation? (i.e. bilinear)
hrflat = scipy.ndimage.interpolation.zoom(flat,4.,order=0,prefilter=False)
img = np.zeros(hrflat.shape)[
hrflat.shape[0]/2.-imsz[0]/2.:hrflat.shape[0]/2.+imsz[0]/2.,
hrflat.shape[1]/2.-imsz[1]/2.:hrflat.shape[1]/2+imsz[1]/2.]
for trange in tranges:
t0,t1=trange
entries = gQuery.getArray(gQuery.aspect(t0,t1),retries=retries)
n = len(entries)
asptime = np.float64(np.array(entries)[:,2])/tscale
aspra = np.float32(np.array(entries)[:,3])
aspdec = np.float32(np.array(entries)[:,4])
asptwist= np.float32(np.array(entries)[:,5])
aspflags= np.float32(np.array(entries)[:,6])
asptwist= np.float32(np.array(entries)[:,9])
aspra0 = np.zeros(n)+skypos[0]
aspdec0 = np.zeros(n)+skypos[1]
xi_vec, eta_vec = gnomonic.gnomfwd_simple(
aspra,aspdec,aspra0,aspdec0,-asptwist,1.0/36000.,0.)
col = 4.*( ((( xi_vec/36000.)/(detsize/2.)*(detsize/(fltsz[0]*pixsz)) + 1.)/2. * fltsz[0]) - (fltsz[0]/2.) )
row = 4.*( (((eta_vec/36000.)/(detsize/2.)*(detsize/(fltsz[1]*pixsz)) + 1.)/2. * fltsz[1]) - (fltsz[1]/2.) )
vectors = mc.rotvec(np.array([col,row]),-asptwist)
for i in range(n):
if verbose>1:
mc.print_inline('Stamping '+str(asptime[i]))
# FIXME: Clean this mess up a little just for clarity.
img += scipy.ndimage.interpolation.shift(scipy.ndimage.interpolation.rotate(hrflat,-asptwist[i],reshape=False,order=0,prefilter=False),[vectors[1,i],vectors[0,i]],order=0,prefilter=False)[hrflat.shape[0]/2.-imsz[0]/2.:hrflat.shape[0]/2.+imsz[0]/2.,hrflat.shape[1]/2.-imsz[1]/2.:hrflat.shape[1]/2+imsz[1]/2.]*dbt.compute_exptime(band,[asptime[i],asptime[i]+1],verbose=verbose,retries=retries)*gxt.compute_flat_scale(asptime[i]+0.5,band,verbose=0)
return img
示例11: hashresponse
def hashresponse(band,events,verbose=0):
"""Given detector xi, eta, return the response at each position."""
# Hash out the response correction
if verbose:
mc.print_inline("Applying the response correction.")
flat, _ = cal.flat(band)
events['col'], events['row'] = xieta2colrow(
events['xi'], events['eta'], band)
events['flat'] = flat[np.array(events['col'], dtype='int16'),
np.array(events['row'], dtype='int16')]
events['scale'] = gxt.compute_flat_scale(events['t'], band)
# TODO: Separately do the binlinearly interpolated response
events['response'] = (events['flat']*events['scale'])
return events
示例12: getcurve
def getcurve(band, ra0, dec0, radius, annulus=None, stepsz=None, lcurve={},
trange=None, tranges=None, verbose=0, coadd=False, minexp=1.,
maxgap=1., maskdepth=20, maskradius=1.5,
photonfile=None, detsize=1.1):
skyrange = [np.array(annulus).max().tolist() if annulus else radius,
np.array(annulus).max().tolist() if annulus else radius,]
if verbose:
mc.print_inline("Getting exposure ranges.")
if tranges is None:
tranges = dbt.fGetTimeRanges(band, [ra0, dec0], trange=trange,
maxgap=maxgap, minexp=minexp, verbose=verbose, detsize=detsize)
elif not np.array(tranges).shape:
print "No exposure time at this location: [{ra},{dec}]".format(
ra=ra0,dec=dec0)
# FIXME: Everything goes to hell if no exposure time is available...
# TODO: Add an ability to specify or exclude specific time ranges
if verbose:
mc.print_inline("Moving to photon level operations.")
# FIXME: This error handling is hideous.
try:
lcurve = quickmag(band, ra0, dec0, tranges, radius, annulus=annulus,
stepsz=stepsz, verbose=verbose, coadd=coadd,
maskdepth=maskdepth,
maskradius=maskradius,photonfile=photonfile)
lcurve['cps'] = lcurve['sources']/lcurve['exptime']
lcurve['cps_bgsub'] = (lcurve['sources']-
lcurve['bg']['simple'])/lcurve['exptime']
lcurve['cps_bgsub_cheese'] = (lcurve['sources']-
lcurve['bg']['cheese'])/lcurve['exptime']
lcurve['mag'] = gxt.counts2mag(lcurve['cps'],band)
lcurve['mag_bgsub'] = gxt.counts2mag(lcurve['cps_bgsub'],band)
lcurve['mag_bgsub_cheese'] = gxt.counts2mag(
lcurve['cps_bgsub_cheese'],band)
lcurve['flux'] = gxt.counts2flux(lcurve['cps'],band)
lcurve['flux_bgsub'] = gxt.counts2flux(lcurve['cps_bgsub'],band)
lcurve['flux_bgsub_cheese'] = gxt.counts2flux(
lcurve['cps_bgsub_cheese'],band)
lcurve['detrad'] = mc.distance(lcurve['detxs'],lcurve['detys'],400,400)
except ValueError:
lcurve['cps']=[]
lcurve['cps_bgsub']=[]
lcurve['cps_bgsub_cheese']=[]
lcurve['mag']=[]
lcurve['mag_bgsub']=[]
lcurve['mag_bgsub_cheese']=[]
lcurve['flux']=[]
lcurve['flux_bgsub']=[]
lcurve['flux_bgsub_cheese']=[]
lcurve['detrad']=[]
if verbose:
mc.print_inline("Done.")
mc.print_inline("")
return lcurve
示例13: bg_mask_sources
def bg_mask_sources(band,ra0,dec0,ras,decs,responses,sources,maskradius=1.5):
# At present, masks to 1.5 sigma where FWHM = 2.3548*sigma
for i in range(len(sources['ra'])):
ix = np.where(mc.angularSeparation(sources['ra'][i], sources['dec'][i],
ras,decs)>=(maskradius/2.3548)*np.median(sources['fwhm'][i,:]))
ras, decs, responses = ras[ix], decs[ix], responses[ix]
return ras,decs,responses
示例14: makemap
def makemap(band,skypos,trange,skyrange,response=False,verbose=0,detsize=1.1):
imsz = gxt.deg2pix(skypos,skyrange)
photons = np.array(gQuery.getArray(gQuery.skyrect(band,
skypos[0],skypos[1],trange[0],trange[1],skyrange[0],skyrange[1]),
verbose=verbose),dtype='float64')
try:
events = {'t':photons[:,0 ]/tscale,'ra':photons[:,1],'dec':photons[:,2],
'xi':photons[:,3],'eta':photons[:,4],
'x':photons[:,5], 'y':photons[:,6]}
except IndexError:
if verbose>2:
print 'No events found at {s} +/- {r} in {t}.'.format(
s=skypos,r=skyrange,t=trange)
return np.zeros(imsz)
# Trim the data on detsize
col, row = ct.xieta2colrow(events['xi'],events['eta'],band)
ix = np.where((1.25/800.)*mc.distance(col,row,400,400)<=detsize)
n = len(ix[0])
m = len(col)
#print 'With detsize {d} using {n} of {m} data.'.format(d=detsize,n=n,m=m)
if n == 0:
return np.zeros(imsz)
for k in events.keys():
events[k] = events[k][ix]
events = ct.hashresponse(band,events)
wcs = define_wcs(skypos,skyrange,width=False,height=False)
coo = zip(events['ra'],events['dec'])
foc = wcs.sip_pix2foc(wcs.wcs_world2pix(coo,1),1)
weights = 1./events['response'] if response else None
H,xedges,yedges=np.histogram2d(foc[:,1]-0.5,foc[:,0]-0.5,bins=imsz,
range=([ [0,imsz[0]],[0,imsz[1]] ]),weights=weights)
return H
示例15: construct_row
def construct_row(i, band, objid, mcat, data):
# Note: mcat['skybg'] is in counts per second per square arcseconds
# where as gPhoton is reporting cps over the aperture area.
return (
objid,
data["t0"][0],
data["t1"][0],
mcat[band]["expt"][i],
data["exptime"][0],
mcat["ra"][i],
mcat["dec"][i],
data["racent"][0],
data["deccent"][0],
mcat[band][4]["mag"][i],
mcat[band][4]["err"][i],
data["mag_bgsub_cheese"][0],
data["mag_bgsub"][0],
data["mag"][0],
mc.distance(data["detxs"], data["detys"], 400, 400)[0],
data["responses"][0],
mcat[band]["skybg"][i],
data["bg"]["simple"][0],
data["bg"]["cheese"][0],
data["bg"]["eff_area"],
)