本文整理匯總了Python中MCUtils.angularSeparation方法的典型用法代碼示例。如果您正苦於以下問題:Python MCUtils.angularSeparation方法的具體用法?Python MCUtils.angularSeparation怎麽用?Python MCUtils.angularSeparation使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類MCUtils
的用法示例。
在下文中一共展示了MCUtils.angularSeparation方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: bg_mask_sources
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import angularSeparation [as 別名]
def bg_mask_sources(band,ra0,dec0,ras,decs,responses,sources,maskradius=1.5):
# At present, masks to 1.5 sigma where FWHM = 2.3548*sigma
for i in range(len(sources['ra'])):
ix = np.where(mc.angularSeparation(sources['ra'][i], sources['dec'][i],
ras,decs)>=(maskradius/2.3548)*np.median(sources['fwhm'][i,:]))
ras, decs, responses = ras[ix], decs[ix], responses[ix]
return ras,decs,responses
示例2: read_photons
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import angularSeparation [as 別名]
def read_photons(photonfile,ra0,dec0,tranges,radius,verbose=0,
colnames=['t','x','y','xa','ya','q','xi','eta','ra','dec','flags']):
"""Read a photon list file and return a python dict() with the expected
format.
"""
if verbose:
print 'Reading photon list file: {f}'.format(f=photonfile)
data = pd.io.parsers.read_csv(photonfile,names=colnames)
ra,dec = np.array(data['ra']),np.array(data['dec'])
angsep = mc.angularSeparation(ra0,dec0,ra,dec)
ix = np.array([])
for trange in tranges:
if verbose:
print trange
cut = np.where((angsep<=radius) & (np.isfinite(angsep)))[0]
ix = np.concatenate((ix,cut),axis=0)
events = {'t':np.array(data['t'][ix])/tscale,
'ra':np.array(data['ra'][ix]),
'dec':np.array(data['dec'][ix]),
'xi':np.array(data['xi'][ix]),
'eta':np.array(data['eta'][ix]),
'x':np.array(data['x'][ix]),
'y':np.array(data['y'][ix])}
return events
示例3: quickmag
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import angularSeparation [as 別名]
def quickmag(band, ra0, dec0, tranges, radius, annulus=None, data={},
stepsz=None, verbose=0, maskdepth=20.0,
maskradius=1.5,detsize=1.25,coadd=False, photonfile=None):
if verbose:
mc.print_inline("Retrieving all of the target events.")
trange = [np.array(tranges).min(),np.array(tranges).max()]
try:
searchradius = annulus[1]
except TypeError:
searchradius = radius
data = pullphotons(band, ra0, dec0, tranges, searchradius,
verbose=verbose, photonfile=photonfile)
if verbose:
mc.print_inline("Isolating source from background.")
angSep = mc.angularSeparation(ra0, dec0, data['ra'], data['dec'])
if verbose:
mc.print_inline("Binning data according to requested depth.")
# Multiple ways of defining bins
if coadd:
bins = np.array(trange)
elif stepsz:
bins = np.append(np.arange(min(trange), max(trange), stepsz),
max(trange))
else:
bins = np.unique(np.array(tranges).flatten())
# This is equivalent in function to np.digitize(data['t'],bins) except
# that it's much, much faster. See numpy issue #2656.
ix = np.searchsorted(bins,data['t'],"right")
# Initialize histogrammed arrays
# FIXME: allocate these from a dict of constructors
lcurve_cols = ['counts', 'sources', 'bg_counts','responses',
'detxs', 'detys', 't0_data', 't1_data', 't_mean', 'racent',
'deccent']
lcurve = {'params':gphot_params(band,[ra0,dec0],radius,annulus=annulus,
verbose=verbose,
detsize=detsize,stepsz=stepsz,
trange=trange,maskdepth=maskdepth,
maskradius=maskradius)}
for col in lcurve_cols:
lcurve[col] = np.zeros(len(bins)-1)
# FIXME: Bottleneck. There's probably a way to do this without looping.
# Don't bother looping through anything with no data.
lcurve['bg'] = {'simple':np.zeros(len(bins)-1),
'cheese':np.zeros(len(bins)-1)}
if annulus is not None:
lcurve['bg']['sources'] = bg_sources(band,ra0,dec0,annulus[1],
maskdepth=maskdepth)
lcurve['bg']['eff_area'] = cheese_bg_area(band,ra0,dec0,annulus,
lcurve['bg']['sources'])
else:
lcurve['bg']['sources'] = None
lcurve['bg']['eff_area'] = 0.
if verbose:
mc.print_inline("Populating histograms.")
for cnt,i in enumerate(np.unique(ix)):
# Exclude data outside of the bins in searchsorted.
if i-1<0 or i==len(bins):
continue
if verbose:
mc.print_inline('Binning {i} of {l}.'.format(
i=cnt,l=len(np.unique(ix))))
t_ix = np.where(ix==i)
# TODO: Optionally limit data to specific parts of detector.
rad_ix = np.where((angSep <= radius) & (ix == i))
# NOTE: This checks for the dim edge case where you have photons in
# the annulus but not in the aperture.
if not len(rad_ix[0]):
continue
lcurve['t0_data'][i-1] = data['t'][rad_ix].min()
lcurve['t1_data'][i-1] = data['t'][rad_ix].max()
lcurve['t_mean'][i-1] = data['t'][rad_ix].mean()
lcurve['counts'][i-1] = len(rad_ix[0])
lcurve['sources'][i-1] = (1./data['response'][rad_ix]).sum()
lcurve['responses'][i-1] = data['response'][rad_ix].mean()
lcurve['detxs'][i-1] = data['col'][rad_ix].mean()
lcurve['detys'][i-1] = data['row'][rad_ix].mean()
lcurve['racent'][i-1] = data['ra'][rad_ix].mean()
lcurve['deccent'][i-1] = data['dec'][rad_ix].mean()
if annulus is not None:
ann_ix = np.where((angSep > annulus[0]) &
(angSep <= annulus[1]) & (ix == i))
lcurve['bg_counts'][i-1] = len(ann_ix[0])
# Background is reported as counts within the aperture
lcurve['bg']['simple'][i-1] = (mc.area(radius) *
(1./data['response'][ann_ix]).sum() /
(mc.area(annulus[1])-mc.area(annulus[0])))
lcurve['bg']['cheese'][i-1] = cheese_bg(band, ra0, dec0, radius,
annulus, data['ra'][t_ix], data['dec'][t_ix],
data['response'][t_ix], maskdepth=maskdepth,
eff_area=lcurve['bg']['eff_area'],
sources=lcurve['bg']['sources'])
else:
lcurve['bg_counts'][i-1]=0.
lcurve['bg']['simple'][i-1]=0.
lcurve['bg']['cheese'][i-1]=0.
# Only return bins that contain data.
ix = np.where((np.isfinite(lcurve['sources'])) &
(np.array(lcurve['sources']) > 0))
lcurve['t0'] = bins[ix]
lcurve['t1'] = bins[ix[0]+1]
#.........這裏部分代碼省略.........
示例4: bg_mask_annulus
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import angularSeparation [as 別名]
def bg_mask_annulus(band,ra0,dec0,annulus,ras,decs,responses):
ix = np.where((mc.angularSeparation(ra0,dec0,ras,decs)>=annulus[0]) &
(mc.angularSeparation(ra0,dec0,ras,decs)<=annulus[1]))
return ras[ix],decs[ix],responses[ix]
示例5: enumerate
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import angularSeparation [as 別名]
markersize=5)
# dRA
plt.subplot(2,2,2,yticks=[],xticks=[],ylim=[-0.004*a,0.004*a])
plt.hist(dRA*np.cos(data[band]['ra'])*a,bins=500,orientation='horizontal',
color='k')
# dDec
plt.subplot(2,2,3,yticks=[],xlim=[-0.004*a,0.004*a])
plt.xlabel('{d}Dec (arcsec)'.format(d=r'$\Delta$'))
plt.gca().invert_yaxis()
plt.hist(dDec*a,bins=500,color='k')
fig.savefig('../calpaper/src/dRA_v_dDec({band})'.format(band=band))
fig = plt.figure(figsize=(8*scl,4*scl))
fig.subplots_adjust(left=0.12,right=0.95,wspace=0.02,bottom=0.15,top=0.9)
for i,band in enumerate(bands):
delta = mc.angularSeparation(data[band]['ra'],data[band]['dec'],
data[band]['racent'],data[band]['deccent'])
plt.subplot(1,2,i+1,yticks=[],xlim=[0.*a,0.002*a])
plt.title('{band} Angular Separation (arcsec)'.format(
band=band,d=r'$\Delta$'))
plt.hist(delta*a,bins=500,range=[0.*a,0.002*a],color='k')
fig.savefig('../calpaper/src/angSep({band}).png'.format(band=band))
###############################################################################
"""Deadtime Sanity Checks
According to the calibration paper, the FUV deadtime correction should be
small (~ a few percent), but it is actually bigger than the NUV correction.
"""
fig = plt.figure(figsize=(8,4))
fig.subplots_adjust(left=0.12,right=0.95,wspace=0.02,bottom=0.15,top=0.9)
for i,band in enumerate(bands):
plt.subplot(1,2,i+1,yticks=[])
示例6: test_angularSeparation
# 需要導入模塊: import MCUtils [as 別名]
# 或者: from MCUtils import angularSeparation [as 別名]
def test_angularSeparation(self):
self.assertAlmostEqual(
mc.angularSeparation(10,20,10.1,20.1),0.13720278279273748)