本文整理匯總了Python中HelperFunctions.ensure_dir方法的典型用法代碼示例。如果您正苦於以下問題:Python HelperFunctions.ensure_dir方法的具體用法?Python HelperFunctions.ensure_dir怎麽用?Python HelperFunctions.ensure_dir使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類HelperFunctions
的用法示例。
在下文中一共展示了HelperFunctions.ensure_dir方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: check_high_t
# 需要導入模塊: import HelperFunctions [as 別名]
# 或者: from HelperFunctions import ensure_dir [as 別名]
def check_high_t(T=6000, metal=0.0, vsini=10):
filenames = [f for f in os.listdir("./") if f.endswith("smoothed.fits") and f.startswith("H")]
corrdir = "Cross_correlations/"
logg = 4.5
HelperFunctions.ensure_dir("Figures/")
for rootfile in sorted(filenames):
corrfile = "{0:s}{1:s}.{2:d}kps_{3:.1f}K{4:+.1f}{5:+.1f}".format(corrdir,
rootfile.split(".fits")[0],
vsini,
T,
logg,
metal)
print corrfile
try:
vel, corr = np.loadtxt(corrfile, unpack=True)
except IOError:
continue
plt.plot(vel, corr, 'k-')
plt.xlabel("Velocity")
plt.ylabel("CCF")
plt.title(rootfile.split(".fits")[0])
plt.show()
示例2: parse_input
# 需要導入模塊: import HelperFunctions [as 別名]
# 或者: from HelperFunctions import ensure_dir [as 別名]
spt_full = data.SpectralType().split()[0]
spt = spt_full[0] + re.search(r'\d*\.?\d*', spt_full[1:]).group()
d = {'Object': object,
'plx': plx,
'SpT': spt,
'exptime': header['exptime']}
return d
if __name__ == '__main__':
scale = True
early, late = parse_input(sys.argv[1:])
# Add each late file to all of the early-type files
HelperFunctions.ensure_dir('GeneratedObservations')
for late_file in late:
for early_file in early:
outfilename = 'GeneratedObservations/{}_{}.fits'.format(early_file.split('/')[-1].split(
'.fits')[0], late_file.split('/')[-1].split('.fits')[0])
if scale:
outfilename = outfilename.replace('.fits', '_scalex10.fits')
if outfilename.split('/')[-1] in os.listdir('GeneratedObservations/'):
print "File already generated. Skipping {}".format(outfilename)
continue
total, early_dict, late_dict = combine(early_file, late_file, increase_scale=scale)
# Prepare for output
column_list = []
for order in total:
示例3: check_all
# 需要導入模塊: import HelperFunctions [as 別名]
# 或者: from HelperFunctions import ensure_dir [as 別名]
def check_all():
filenames = [f for f in os.listdir("./") if f.endswith("smoothed.fits") and f.startswith("H")]
corrdir = "Cross_correlations/"
vsini_values = [1, 10, 20, 30, 40]
Temperatures = [3300, 3500, 3700, 3900, 4200, 4500, 5000, 5500]
Temperatures = range(3000, 6800, 100)
metals = [-0.5, 0.0, 0.5]
logg = 4.5
HelperFunctions.ensure_dir("Figures/")
for rootfile in sorted(filenames):
Tvals = []
Zvals = []
rotvals = []
significance = []
corrval = []
for T in Temperatures:
for metal in metals:
for vsini in vsini_values:
corrfile = "{0:s}{1:s}.{2:d}kps_{3:.1f}K{4:+.1f}{5:+.1f}".format(corrdir,
rootfile.split(".fits")[0],
vsini,
T,
logg,
metal)
print corrfile
try:
vel, corr = np.loadtxt(corrfile, unpack=True)
except IOError:
continue
# Check the significance of the highest peak within +/- 500 km/s
left = np.searchsorted(vel, -500)
right = np.searchsorted(vel, 500)
idx = np.argmax(corr[left:right]) + left
v = vel[idx]
goodindices = np.where(np.abs(vel - v) > vsini)[0]
std = np.std(corr[goodindices])
mean = np.mean(corr[goodindices])
mean = np.median(corr)
mad = HelperFunctions.mad(corr)
std = 1.4826 * mad
sigma = (corr[idx] - mean) / std
"""
# Plot if > 3 sigma peak
if sigma > 4:
fig = plt.figure(10)
ax = fig.add_subplot(111)
ax.plot(vel, corr, 'k-', lw=2)
ax.set_xlabel("Velocity (km/s)")
ax.set_ylabel("CCF")
ax.set_title(r'{0:s}: $T_s$={1:d}K & [Fe/H]={2:.1f}'.format(rootfile, T, metal))
ax.grid(True)
fig.savefig(u"Figures/{0:s}.pdf".format(corrfile.split("/")[-1]))
plt.close(fig)
"""
Tvals.append(T)
Zvals.append(metal)
rotvals.append(vsini)
significance.append(sigma)
corrval.append(corr[idx] - np.median(corr))
# Now, make a plot of the significance as a function of Temperature and metallicity for each vsini
Tvals = np.array(Tvals)
Zvals = np.array(Zvals)
rotvals = np.array(rotvals)
significance = np.array(significance)
corrval = np.array(corrval)
fig = plt.figure(1)
ax = fig.add_subplot(111, projection='3d')
ax.set_title("Significance Summary for %s" % (rootfile.split(".fits")[0].replace("_", " ")))
for i, rot in enumerate(vsini_values):
goodindices = np.where(abs(rotvals - rot) < 1e-5)[0]
ax.set_xlabel("Temperature (K)")
ax.set_ylabel("[Fe/H]")
ax.set_zlabel("Significance")
ax.plot(Tvals[goodindices], Zvals[goodindices], significance[goodindices], 'o', label="%i km/s" % rot)
#ax.plot(Tvals[goodindices], Zvals[goodindices], corrval[goodindices], 'o', label="{0:d} km/s".format(rot))
leg = ax.legend(loc='best', fancybox=True)
leg.get_frame().set_alpha(0.5)
fig.savefig("Figures/Summary_{0:s}.pdf".format(rootfile.split(".fits")[0]))
idx = np.argmax(significance)
#ax.plot(Tvals[idx], Zvals[idx], significance[idx], 'x', markersize=25, label="Most Significant")
print os.getcwd()
plt.show()
示例4:
# 需要導入模塊: import HelperFunctions [as 別名]
# 或者: from HelperFunctions import ensure_dir [as 別名]
import numpy as np
import DataStructures
import HelperFunctions
from PlotBlackbodies import Planck
import Normalized_Xcorr
currentdir = os.getcwd() + "/"
homedir = os.environ["HOME"]
outfiledir = currentdir + "Cross_correlations/"
modeldir = homedir + "/School/Research/Models/Sorted/Stellar/Vband/"
minvel = -1000 # Minimum velocity to output, in km/s
maxvel = 1000
HelperFunctions.ensure_dir(outfiledir)
model_list = [modeldir + "lte30-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte31-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte32-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte33-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte34-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte35-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte36-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte37-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte38-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte39-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte40-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte42-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte43-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
modeldir + "lte44-4.00-0.0.AGS.Cond.PHOENIX-ACES-2009.HighRes.7.sorted",
示例5: range
# 需要導入模塊: import HelperFunctions [as 別名]
# 或者: from HelperFunctions import ensure_dir [as 別名]
matplotlib.use("tkagg")
import matplotlib.pyplot as plt
import numpy as np
import HelperFunctions
if __name__ == "__main__":
filenames = [f for f in os.listdir("./") if f.endswith("smoothed.fits") and f.startswith("H")]
corrdir = "Cross_correlations/"
vsini_values = [1, 10, 20, 30, 40]
Temperatures = [3300, 3500, 3700, 3900, 4200, 4500, 5000, 5500]
Temperatures = range(3000, 6800, 100)
metals = [-0.5, 0.0, 0.5]
logg = 4.5
HelperFunctions.ensure_dir("Figures/")
for rootfile in sorted(filenames):
Tvals = []
Zvals = []
rotvals = []
significance = []
for T in Temperatures:
for metal in metals:
for vsini in vsini_values:
corrfile = "{0:s}{1:s}.{2:d}kps_{3:.1f}K{4:+.1f}{5:+.1f}".format(corrdir,
rootfile.split(".fits")[0],
vsini,
T,
logg,
metal)
示例6: ValueError
# 需要導入模塊: import HelperFunctions [as 別名]
# 或者: from HelperFunctions import ensure_dir [as 別名]
plt.show()
# Get instrument name from the header
header = fits.getheader(fname)
observatory = header["OBSERVAT"]
if "ctio" in observatory.lower():
instrument = "CHIRON"
star = header["OBJECT"].replace(" ", "")
else:
instrument = header["INSTRUME"]
if "ts23" in instrument.lower():
instrument = "TS23"
star = header["OBJECT"].replace(" ", "")
elif "hrs" in instrument.lower():
instrument = "HRS"
star = header["OBJECT"].split()[0].replace("_", "")
else:
raise ValueError("Unknown instrument: %s" % instrument)
outfilename = "%s/%s/%s/%s.txt" % (outdir, instrument, star, star)
print outfilename
HelperFunctions.ensure_dir(outfilename)
np.savetxt(outfilename, np.transpose((output.x * 10.0, output.y)))
# for i, order in enumerate(orders):
# outfilename = "%s/%s/%s/order%i.txt" %(outdir, instrument, star, i+1)
# np.savetxt(outfilename, np.transpose((order.x*10.0, order.y/order.cont)))
示例7: range
# 需要導入模塊: import HelperFunctions [as 別名]
# 或者: from HelperFunctions import ensure_dir [as 別名]
tellurics = False
trimsize = 1
windowsize = 101
MS = SpectralTypeRelations.MainSequence()
PMS = SpectralTypeRelations.PreMainSequence()
vel_list = range(-400, 400, 50)
outdir = "Sensitivity/"
for arg in sys.argv[1:]:
if "-e" in arg:
extensions = False
if "-t" in arg:
tellurics = True #telluric lines modeled but not removed
else:
fileList.append(arg)
HelperFunctions.ensure_dir(outdir)
outfile = open(outdir + "logfile.dat", "w")
outfile.write("Sensitivity Analysis:\n*****************************\n\n")
outfile.write(
"Filename\t\t\tPrimary Temperature\tSecondary Temperature\tMass (Msun)\tMass Ratio\tVelocity\tPeak Correct?\tSignificance\n")
for fname in fileList:
if extensions:
orders_original = HelperFunctions.ReadFits(fname, extensions=extensions, x="wavelength", y="flux",
errors="error")
if tellurics:
model_orders = HelperFunctions.ReadFits(fname, extensions=extensions, x="wavelength", y="model")
for i, order in enumerate(orders_original):
orders_original[i].cont = FindContinuum.Continuum(order.x, order.y, lowreject=2, highreject=2)
orders_original[i].y /= model_orders[i].y
示例8: slow_companion_search
# 需要導入模塊: import HelperFunctions [as 別名]
# 或者: from HelperFunctions import ensure_dir [as 別名]
#.........這裏部分代碼省略.........
except AttributeError:
temperature_dict[fname] = np.nan # Unknown
logging.warning('Spectral type retrieval from simbad failed! Entering NaN for primary temperature!')
datadict[fname] = orders
else:
orders = datadict[fname]
# Now, process the model
model_orders = process_model(model.copy(), orders, vsini_primary=vsini_prim, maxvel=1000.0,
debug=debug, oversample=1, logspace=False)
# Get order weights if addmode='T-weighted'
if addmode.lower() == 't-weighted':
get_weights = False
orderweights = [np.sum(temperature_weights(o.x)) for o in orders]
addmode = 'simple-weighted'
if debug and makeplots:
fig = plt.figure('T={} vsini={}'.format(temp, vsini_sec))
for o, m in zip(orders, model_orders):
d_scale = np.std(o.y/o.cont)
m_scale = np.std(m.y/m.cont)
plt.plot(o.x, (o.y/o.cont-1.0)/d_scale, 'k-', alpha=0.4)
plt.plot(m.x, (m.y/m.cont-1.0)/m_scale, 'r-', alpha=0.6)
plt.show(block=False)
# Make sure the output directory exists
output_dir = "Cross_correlations/"
outfilebase = fname.split(".fits")[0]
if "/" in fname:
dirs = fname.split("/")
outfilebase = dirs[-1].split(".fits")[0]
if obstype.lower() == 'synthetic':
output_dir = ""
for directory in dirs[:-1]:
output_dir = output_dir + directory + "/"
output_dir = output_dir + "Cross_correlations/"
HelperFunctions.ensure_dir(output_dir)
# Save the model and data orders, if debug=True
if debug:
# Save the individual spectral inputs and CCF orders (unweighted)
output_dir2 = output_dir.replace("Cross_correlations", "CCF_inputs")
HelperFunctions.ensure_dir(output_dir2)
HelperFunctions.ensure_dir("%sCross_correlations/" % (output_dir2))
for i, (o, m) in enumerate(zip(orders, model_orders)):
outfilename = "{0:s}{1:s}.{2:.0f}kps_{3:.1f}K{4:+.1f}{5:+.1f}.data.order{6:d}".format(
output_dir2,
outfilebase, vsini_sec,
temp, gravity,
metallicity, i + 1)
o.output(outfilename)
outfilename = "{0:s}{1:s}.{2:.0f}kps_{3:.1f}K{4:+.1f}{5:+.1f}.model.order{6:d}".format(
output_dir2,
outfilebase, vsini_sec,
temp, gravity,
metallicity, i + 1)
m.output(outfilename)
corr = Correlate.Correlate(orders, model_orders, addmode=addmode, outputdir=output_dir,
get_weights=get_weights, prim_teff=temperature_dict[fname],
orderweights=orderweights, debug=debug)
if debug:
corr, ccf_orders = corr
# Barycentric correction
if vbary_correct:
corr.x += vbary
# Output the ccf
if obstype.lower() == 'synthetic':
pars = {'outdir': output_dir, 'outbase': outfilebase, 'addmode': addmode,
'vsini_prim': vsini_prim, 'vsini': vsini_sec,
'T': temp, 'logg': gravity, '[Fe/H]': metallicity}
save_synthetic_ccf(corr, params=pars, mode=output_mode)
else:
pars = {'outdir': output_dir, 'fname': fname, 'addmode': addmode,
'vsini_prim': vsini_prim, 'vsini': vsini_sec,
'T': temp, 'logg': gravity, '[Fe/H]': metallicity}
pars['vbary'] = vbary if vbary_correct else np.nan
save_ccf(corr, params=pars, mode=output_mode, hdf_outfilename=output_file)
# Save the individual orders, if debug=True
if debug:
for i, c in enumerate(ccf_orders):
print "Saving CCF inputs for order {}".format(i + 1)
outfilename = "{0:s}Cross_correlations/{1:s}.{2:.0f}kps_{3:.1f}K{4:+.1f}{5:+.1f}.order{6:d}".format(
output_dir2,
outfilebase, vsini_sec,
temp, gravity,
metallicity, i + 1)
c.output(outfilename)
# Delete the model. We don't need it anymore and it just takes up ram.
modeldict[temp][gravity][metallicity][alpha][vsini_sec] = []
return
示例9: CompanionSearch
# 需要導入模塊: import HelperFunctions [as 別名]
# 或者: from HelperFunctions import ensure_dir [as 別名]
def CompanionSearch(fileList,
badregions=[],
interp_regions=[],
extensions=True,
resolution=60000,
trimsize=1,
vsini_values=(10, 20, 30, 40),
Tvalues=range(3000, 6900, 100),
metal_values=(-0.5, 0.0, +0.5),
logg_values=(4.5,),
modeldir=StellarModel.modeldir,
hdf5_file=StellarModel.HDF5_FILE,
vbary_correct=True,
observatory="CTIO",
addmode="ML",
debug=False):
model_list = StellarModel.GetModelList(type='hdf5',
hdf5_file=hdf5_file,
temperature=Tvalues,
metal=metal_values,
logg=logg_values)
modeldict, processed = StellarModel.MakeModelDicts(model_list, type='hdf5', hdf5_file=hdf5_file,
vsini_values=vsini_values, vac2air=True)
get_weights = True if addmode.lower() == "weighted" else False
orderweights = None
MS = SpectralTypeRelations.MainSequence()
# Do the cross-correlation
datadict = defaultdict(list)
temperature_dict = defaultdict(float)
vbary_dict = defaultdict(float)
alpha=0.0
for temp in sorted(modeldict.keys()):
for gravity in sorted(modeldict[temp].keys()):
for metallicity in sorted(modeldict[temp][gravity].keys()):
for vsini in vsini_values:
for fname in fileList:
if vbary_correct:
if fname in vbary_dict:
vbary = vbary_dict[fname]
else:
vbary = HelCorr_IRAF(fits.getheader(fname), observatory=observatory)
vbary_dict[fname] = vbary
process_data = False if fname in datadict else True
if process_data:
orders = Process_Data(fname, badregions, interp_regions=interp_regions,
extensions=extensions, trimsize=trimsize)
header = fits.getheader(fname)
spt = StarData.GetData(header['object']).spectype
match = re.search('[0-9]', spt)
if match is None:
spt = spt[0] + "5"
else:
spt = spt[:match.start() + 1]
temperature_dict[fname] = MS.Interpolate(MS.Temperature, spt)
else:
orders = datadict[fname]
output_dir = "Cross_correlations/"
outfilebase = fname.split(".fits")[0]
if "/" in fname:
dirs = fname.split("/")
output_dir = ""
outfilebase = dirs[-1].split(".fits")[0]
for directory in dirs[:-1]:
output_dir = output_dir + directory + "/"
output_dir = output_dir + "Cross_correlations/"
HelperFunctions.ensure_dir(output_dir)
model = modeldict[temp][gravity][metallicity][alpha][vsini]
pflag = not processed[temp][gravity][metallicity][alpha][vsini]
# if pflag:
# orderweights = None
retdict = Correlate.GetCCF(orders,
model,
resolution=resolution,
vsini=vsini,
rebin_data=process_data,
process_model=pflag,
debug=debug,
outputdir=output_dir.split("Cross_corr")[0],
addmode=addmode,
orderweights=orderweights,
get_weights=get_weights,
prim_teff=temperature_dict[fname])
corr = retdict["CCF"]
if pflag:
processed[temp][gravity][metallicity][alpha][vsini] = True
modeldict[temp][gravity][metallicity][alpha][vsini] = retdict["model"]
# orderweights = retdict['weights']
if process_data:
datadict[fname] = retdict['data']
outfilename = "{0:s}{1:s}.{2:.0f}kps_{3:.1f}K{4:+.1f}{5:+.1f}".format(output_dir, outfilebase,
vsini, temp, gravity,
metallicity)
print "Outputting to ", outfilename, "\n"
if vbary_correct:
#.........這裏部分代碼省略.........
示例10: Fit
# 需要導入模塊: import HelperFunctions [as 別名]
# 或者: from HelperFunctions import ensure_dir [as 別名]
#.........這裏部分代碼省略.........
#Make an instance of the model getter
if mg is None:
mg = StellarModel.KuruczGetter(modeldir,
T_min=T_min,
T_max=T_max,
logg_min=logg_min,
logg_max=logg_max,
metal_min=metal_min,
metal_max=metal_max,
alpha_min=alpha_min,
alpha_max=alpha_max,
wavemin=350.0)
# Make the appropriate lmfit model
fitter = HelperFunctions.ListModel(LM_Model, independent_vars=['x'], model_getter=mg)
#Set default values
fitter.set_param_hint("rv", value=rv.value, min=-50, max=50)
fitter.set_param_hint('vsini', value=vsini.value, vary=True, min=0.0, max=500.0)
fitter.set_param_hint('temperature', value=temperature, min=T_min, max=T_max, vary=True)
fitter.set_param_hint('logg', value=logg, min=logg_min, max=logg_max, vary=True)
fitter.set_param_hint('metal', value=metal, min=metal_min, max=metal_max, vary=True)
fitter.set_param_hint('alpha', value=0.0, min=alpha_min, max=alpha_max, vary=mg.alpha_varies)
"""
Here is the main loop over files!
"""
for filename in file_list:
# Make output directories
header = fits.getheader(filename)
date = header['date-obs'].split("T")[0]
star = header['object']
stardir = "{:s}{:s}/".format(output_dir, star.replace(" ", "_"))
HelperFunctions.ensure_dir(stardir)
datedir = "{:s}{:s}/".format(stardir, date)
HelperFunctions.ensure_dir(datedir)
chain_filename = "{:s}chain.dat".format(datedir)
# Read the data
print "Fitting parameters for {}".format(filename)
all_orders = HelperFunctions.ReadExtensionFits(filename)
orders = [o[1] for o in enumerate(all_orders) if o[0] in good_orders]
# Perform the fit
optdict = {"epsfcn": 1e-2}
params = fitter.make_params()
fitparams = {"rv": np.zeros(N_iter),
"vsini": np.zeros(N_iter),
"temperature": np.zeros(N_iter),
"logg": np.zeros(N_iter),
"metal": np.zeros(N_iter),
"alpha": np.zeros(N_iter)}
orders_original = [o.copy() for o in orders]
chainfile = open(chain_filename, "a")
vbary = GenericSearch.HelCorr(header, observatory="CTIO")
for n in range(N_iter):
print "Fitting iteration {:d}/{:d}".format(n + 1, N_iter)
orders = []
for order in orders_original:
o = order.copy()
o.y += np.random.normal(loc=0, scale=o.err)
orders.append(o.copy())
# Make a fast interpolator instance if not the first loop
#if n > 0:
# fast_interpolator = mg.make_vsini_interpolator()