當前位置: 首頁>>代碼示例>>Java>>正文


Java Evaluation.incorrect方法代碼示例

本文整理匯總了Java中weka.classifiers.Evaluation.incorrect方法的典型用法代碼示例。如果您正苦於以下問題:Java Evaluation.incorrect方法的具體用法?Java Evaluation.incorrect怎麽用?Java Evaluation.incorrect使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在weka.classifiers.Evaluation的用法示例。


在下文中一共展示了Evaluation.incorrect方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: crossValidate

import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
  * Utility method for fast 5-fold cross validation of a naive bayes
  * model
  *
  * @param fullModel a <code>NaiveBayesUpdateable</code> value
  * @param trainingSet an <code>Instances</code> value
  * @param r a <code>Random</code> value
  * @return a <code>double</code> value
  * @exception Exception if an error occurs
  */
 public static double crossValidate(NaiveBayesUpdateable fullModel,
		       Instances trainingSet,
		       Random r) throws Exception {
   // make some copies for fast evaluation of 5-fold xval
   Classifier [] copies = AbstractClassifier.makeCopies(fullModel, 5);
   Evaluation eval = new Evaluation(trainingSet);
   // make some splits
   for (int j = 0; j < 5; j++) {
     Instances test = trainingSet.testCV(5, j);
     // unlearn these test instances
     for (int k = 0; k < test.numInstances(); k++) {
test.instance(k).setWeight(-test.instance(k).weight());
((NaiveBayesUpdateable)copies[j]).updateClassifier(test.instance(k));
// reset the weight back to its original value
test.instance(k).setWeight(-test.instance(k).weight());
     }
     eval.evaluateModel(copies[j], test);
   }
   return eval.incorrect();
 }
 
開發者ID:dsibournemouth,項目名稱:autoweka,代碼行數:31,代碼來源:NBTreeNoSplit.java

示例2: modelErrors

import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
    *Updates the numIncorrectModel field for all nodes. This is needed for calculating the alpha-values. 
    */
   public void modelErrors() throws Exception{
	
Evaluation eval = new Evaluation(m_train);
	
if (!m_isLeaf) {
    m_isLeaf = true;
    eval.evaluateModel(this, m_train);
    m_isLeaf = false;
    m_numIncorrectModel = eval.incorrect();
    for (int i = 0; i < m_sons.length; i++) m_sons[i].modelErrors();
} else {
    eval.evaluateModel(this, m_train);
    m_numIncorrectModel = eval.incorrect();
}
   }
 
開發者ID:dsibournemouth,項目名稱:autoweka,代碼行數:19,代碼來源:LMTNode.java

示例3: crossValidate

import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
  * Utility method for fast 5-fold cross validation of a naive bayes
  * model
  *
  * @param fullModel a <code>NaiveBayesUpdateable</code> value
  * @param trainingSet an <code>Instances</code> value
  * @param r a <code>Random</code> value
  * @return a <code>double</code> value
  * @exception Exception if an error occurs
  */
 public static double crossValidate(NaiveBayesUpdateable fullModel,
		       Instances trainingSet,
		       Random r) throws Exception {
   // make some copies for fast evaluation of 5-fold xval
   Classifier [] copies = Classifier.makeCopies(fullModel, 5);
   Evaluation eval = new Evaluation(trainingSet);
   // make some splits
   for (int j = 0; j < 5; j++) {
     Instances test = trainingSet.testCV(5, j);
     // unlearn these test instances
     for (int k = 0; k < test.numInstances(); k++) {
test.instance(k).setWeight(-test.instance(k).weight());
((NaiveBayesUpdateable)copies[j]).updateClassifier(test.instance(k));
// reset the weight back to its original value
test.instance(k).setWeight(-test.instance(k).weight());
     }
     eval.evaluateModel(copies[j], test);
   }
   return eval.incorrect();
 }
 
開發者ID:williamClanton,項目名稱:jbossBA,代碼行數:31,代碼來源:NBTreeNoSplit.java

示例4: modelErrors

import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
  * Updates the numIncorrectModel field for all nodes when subtree (to be 
  * pruned) is rooted. This is needed for calculating the alpha-values.
  * 
  * @throws Exception 	if something goes wrong
  */
 public void modelErrors() throws Exception{
   Evaluation eval = new Evaluation(m_train);

   if (!m_isLeaf) {
     m_isLeaf = true; //temporarily make leaf

     // calculate distribution for evaluation
     eval.evaluateModel(this, m_train);
     m_numIncorrectModel = eval.incorrect();

     m_isLeaf = false;

     for (int i = 0; i < m_Successors.length; i++)
m_Successors[i].modelErrors();

   } else {
     eval.evaluateModel(this, m_train);
     m_numIncorrectModel = eval.incorrect();
   }       
 }
 
開發者ID:williamClanton,項目名稱:jbossBA,代碼行數:27,代碼來源:SimpleCart.java


注:本文中的weka.classifiers.Evaluation.incorrect方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。