本文整理匯總了Java中weka.classifiers.Evaluation.evaluateModel方法的典型用法代碼示例。如果您正苦於以下問題:Java Evaluation.evaluateModel方法的具體用法?Java Evaluation.evaluateModel怎麽用?Java Evaluation.evaluateModel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類weka.classifiers.Evaluation
的用法示例。
在下文中一共展示了Evaluation.evaluateModel方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: crossValidate
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
* Utility method for fast 5-fold cross validation of a naive bayes
* model
*
* @param fullModel a <code>NaiveBayesUpdateable</code> value
* @param trainingSet an <code>Instances</code> value
* @param r a <code>Random</code> value
* @return a <code>double</code> value
* @exception Exception if an error occurs
*/
public static double crossValidate(NaiveBayesUpdateable fullModel,
Instances trainingSet,
Random r) throws Exception {
// make some copies for fast evaluation of 5-fold xval
Classifier [] copies = AbstractClassifier.makeCopies(fullModel, 5);
Evaluation eval = new Evaluation(trainingSet);
// make some splits
for (int j = 0; j < 5; j++) {
Instances test = trainingSet.testCV(5, j);
// unlearn these test instances
for (int k = 0; k < test.numInstances(); k++) {
test.instance(k).setWeight(-test.instance(k).weight());
((NaiveBayesUpdateable)copies[j]).updateClassifier(test.instance(k));
// reset the weight back to its original value
test.instance(k).setWeight(-test.instance(k).weight());
}
eval.evaluateModel(copies[j], test);
}
return eval.incorrect();
}
示例2: trainRandomForest
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
public static void trainRandomForest(final Instances trainingSet) throws Exception {
// Create a classifier
final RandomForest tree = new RandomForest();
tree.buildClassifier(trainingSet);
// Test the model
final Evaluation eval = new Evaluation(trainingSet);
// eval.crossValidateModel(tree, trainingSet, 10, new Random(1));
eval.evaluateModel(tree, trainingSet);
// Print the result à la Weka explorer:
logger.info(eval.toSummaryString());
logger.info(eval.toMatrixString());
logger.info(tree.toString());
}
示例3: modelErrors
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
*Updates the numIncorrectModel field for all nodes. This is needed for calculating the alpha-values.
*/
public void modelErrors() throws Exception{
Evaluation eval = new Evaluation(m_train);
if (!m_isLeaf) {
m_isLeaf = true;
eval.evaluateModel(this, m_train);
m_isLeaf = false;
m_numIncorrectModel = eval.incorrect();
for (int i = 0; i < m_sons.length; i++) m_sons[i].modelErrors();
} else {
eval.evaluateModel(this, m_train);
m_numIncorrectModel = eval.incorrect();
}
}
示例4: crossValidate
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
* Utility method for fast 5-fold cross validation of a naive bayes
* model
*
* @param fullModel a <code>NaiveBayesUpdateable</code> value
* @param trainingSet an <code>Instances</code> value
* @param r a <code>Random</code> value
* @return a <code>double</code> value
* @exception Exception if an error occurs
*/
public static double crossValidate(NaiveBayesUpdateable fullModel,
Instances trainingSet,
Random r) throws Exception {
// make some copies for fast evaluation of 5-fold xval
Classifier [] copies = Classifier.makeCopies(fullModel, 5);
Evaluation eval = new Evaluation(trainingSet);
// make some splits
for (int j = 0; j < 5; j++) {
Instances test = trainingSet.testCV(5, j);
// unlearn these test instances
for (int k = 0; k < test.numInstances(); k++) {
test.instance(k).setWeight(-test.instance(k).weight());
((NaiveBayesUpdateable)copies[j]).updateClassifier(test.instance(k));
// reset the weight back to its original value
test.instance(k).setWeight(-test.instance(k).weight());
}
eval.evaluateModel(copies[j], test);
}
return eval.incorrect();
}
示例5: Main
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
public Main() {
try {
BufferedReader datafile;
datafile = readDataFile("camping.txt");
Instances data = new Instances(datafile);
data.setClassIndex(data.numAttributes() - 1);
Instances trainingData = new Instances(data, 0, 14);
Instances testingData = new Instances(data, 14, 5);
Evaluation evaluation = new Evaluation(trainingData);
SMO smo = new SMO();
smo.buildClassifier(data);
evaluation.evaluateModel(smo, testingData);
System.out.println(evaluation.toSummaryString());
// Test instance
Instance instance = new DenseInstance(3);
instance.setValue(data.attribute("age"), 78);
instance.setValue(data.attribute("income"), 125700);
instance.setValue(data.attribute("camps"), 1);
instance.setDataset(data);
System.out.println("The instance: " + instance);
System.out.println(smo.classifyInstance(instance));
} catch (Exception ex) {
ex.printStackTrace();
}
}
開發者ID:PacktPublishing,項目名稱:Machine-Learning-End-to-Endguide-for-Java-developers,代碼行數:30,代碼來源:Main-SVG.java
示例6: evaluate
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
public static void evaluate(Classifier clf, Instances data, double minPerfomance)
throws Exception {
Instances[] split = TestUtil.splitTrainTest(data);
Instances train = split[0];
Instances test = split[1];
clf.buildClassifier(train);
Evaluation trainEval = new Evaluation(train);
trainEval.evaluateModel(clf, train);
Evaluation testEval = new Evaluation(train);
testEval.evaluateModel(clf, test);
final double testPctCorrect = testEval.pctCorrect();
final double trainPctCorrect = trainEval.pctCorrect();
log.info("Train: {}, Test: {}", trainPctCorrect, testPctCorrect);
boolean success =
testPctCorrect > minPerfomance && trainPctCorrect > minPerfomance;
Assert.assertTrue(success);
}
示例7: holdout
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
* Perform simple holdout with a given percentage
*
* @param clf Classifier
* @param data Full dataset
* @param p Split percentage
* @throws Exception
*/
public static void holdout(Classifier clf, Instances data, double p) throws Exception {
Instances[] split = splitTrainTest(data, p);
Instances train = split[0];
Instances test = split[1];
clf.buildClassifier(train);
Evaluation trainEval = new Evaluation(train);
trainEval.evaluateModel(clf, train);
logger.info("Weka Train Evaluation:");
logger.info(trainEval.toSummaryString());
if (!data.classAttribute().isNumeric()) {
logger.info(trainEval.toMatrixString());
}
Evaluation testEval = new Evaluation(train);
logger.info("Weka Test Evaluation:");
testEval.evaluateModel(clf, test);
logger.info(testEval.toSummaryString());
if (!data.classAttribute().isNumeric()) {
logger.info(testEval.toMatrixString());
}
}
示例8: getErrorPercent
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
@Override
public double getErrorPercent() {
this.splitInstances();
try {
this.getClassifier().buildClassifier(getTrainInstances());
Evaluation eval = new Evaluation(getTestInstances());
eval.evaluateModel(getClassifier(), getTestInstances());
return eval.pctIncorrect();
} catch (Exception e) {
e.printStackTrace();
return -1;
}
}
示例9: trainRandomCommittee
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
public static void trainRandomCommittee(final Instances trainingSet) throws Exception {
logger.info("Create a classifier");
final RandomTree classifier = new RandomTree();
classifier.setKValue(0);
classifier.setMaxDepth(0);
classifier.setMinNum(0.001);
classifier.setAllowUnclassifiedInstances(false);
classifier.setNumFolds(0);
final RandomCommittee tree = new RandomCommittee();
tree.setClassifier(classifier);
tree.setNumIterations(10);
tree.buildClassifier(trainingSet);
logger.info("Test the model");
final Evaluation eval = new Evaluation(trainingSet);
// eval.crossValidateModel(tree, trainingSet, 10, new Random(1));
eval.evaluateModel(tree, trainingSet);
// Print the result à la Weka explorer:
logger.info(eval.toSummaryString());
logger.info(tree.toString());
logger.info(eval.toMatrixString());
logger.info(eval.toClassDetailsString());
logger.info(eval.toCumulativeMarginDistributionString());
// logger.info("coefficients");
// for(int i = 0; i < tree.coefficients().length; ++i){
// logger.info("{} | {}", trainingSet.attribute(i).name(), tree.coefficients()[i]);
// }
// try {
// final File file = new File(GitHubPublisher.localPath + RetailSalePrediction.predict_retail_sales + File.separator + "prediction_set_script.js");
// FileUtils.writeStringToFile(file, ClassifierToJs.compress(ClassifierToJs.toSource(tree, "predictCommonBySet")), "UTF-8");
// } catch (final Exception e) {
// logger.error(e.getLocalizedMessage(), e);
// }
}
示例10: trainDecisionTable
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
public static void trainDecisionTable(final Instances trainingSet) throws Exception {
// Create a classifier
final DecisionTable tree = new DecisionTable();
tree.buildClassifier(trainingSet);
// Test the model
final Evaluation eval = new Evaluation(trainingSet);
// eval.crossValidateModel(tree, trainingSet, 10, new Random(1));
eval.evaluateModel(tree, trainingSet);
// Print the result à la Weka explorer:
logger.info(eval.toSummaryString());
logger.info(tree.toString());
// try {
// final File file = new File(GitHubPublisher.localPath + RetailSalePrediction.predict_retail_sales + File.separator + "prediction_set_script.js");
// FileUtils.writeStringToFile(file, ClassifierToJs.compress(ClassifierToJs.toSource(tree, "predictCommonBySet")), "UTF-8");
// } catch (final Exception e) {
// logger.error(e.getLocalizedMessage(), e);
// }
}
示例11: testModel
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
* Loads the model stored in the given file and evaluates it against the current test data.
* The void returns and error if no test data is presents.
*
* @param model
* @throws Exception
*/
public void testModel(String model) throws Exception
{
if ((testdata == null) || testdata.isEmpty())
{
System.err.println("WekaWrapper: testModel() - no test data available, model won't be evaluated");
System.exit(9);
}
// check model file
//if (! FileUtilsElh.checkFile(modelPath))
//{
// System.err.println("WekaWrapper: testModel() - model couldn't be loaded");
// System.exit(8);
//}
// deserialize model
this.MLclass = (Classifier) weka.core.SerializationHelper.readAll(model)[0];
System.err.println("WekaWrapper: testModel() - Classifier ready.");
Evaluation eTest = new Evaluation(this.testdata);
eTest.evaluateModel(this.MLclass, this.testdata);
System.err.println("WekaWrapper: testModel() - Test ready.");
printClassifierResults (eTest);
}
示例12: modelErrors
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
* Updates the numIncorrectModel field for all nodes when subtree (to be
* pruned) is rooted. This is needed for calculating the alpha-values.
*
* @throws Exception if something goes wrong
*/
public void modelErrors() throws Exception{
Evaluation eval = new Evaluation(m_train);
if (!m_isLeaf) {
m_isLeaf = true; //temporarily make leaf
// calculate distribution for evaluation
eval.evaluateModel(this, m_train);
m_numIncorrectModel = eval.incorrect();
m_isLeaf = false;
for (int i = 0; i < m_Successors.length; i++)
m_Successors[i].modelErrors();
} else {
eval.evaluateModel(this, m_train);
m_numIncorrectModel = eval.incorrect();
}
}
示例13: test
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
public void test(String trainFile, String testFile) {
try {
// load the files
loadTrainFile(trainFile);
loadTestFile(testFile);
// build the classifier
Classifier cls = new J48();
cls.buildClassifier(train);
// evaluate the classifier
Evaluation eval = new Evaluation(train);
eval.evaluateModel(cls, test);
// print the results
Logger.log(LogLevel.Classification,
eval.toSummaryString("\nResults\n======\n", false));
} catch (Exception e) {
Logger.log(LogLevel.Error, e.toString());
}
}
示例14: getCrossValidation
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
* @param cls
* @param data
* @param folds
* @return [0] = pctCorrect, [1] = pctIncorrect
* @throws Exception
*/
public double[] getCrossValidation(Classifier cls, Instances data, int folds) throws Exception {
cls.buildClassifier(data);
Classifier copy = Classifier.makeCopy(cls);
double[] results = new double[2];
for (int n = 0; n < folds; n++) {
Instances train = data.trainCV(folds, n);
Instances test = data.testCV(folds, n);
// CSVSaver saver = new CSVSaver();
// saver.setInstances(train);
// saver.setFile(new File("../data.csv"));
// saver.writeBatch();
cls.buildClassifier(train);
Evaluation eval = new Evaluation(data);
eval.evaluateModel(cls, test);
results[0] = results[0] + (eval.pctCorrect() / 100);
results[1] = results[1] + (eval.pctIncorrect() / 100);
}
cls = copy;
results[0] = results[0] / folds;
results[1] = results[1] / folds;
return results;
}
示例15: main
import weka.classifiers.Evaluation; //導入方法依賴的package包/類
public static void main(String[] args) throws Exception {
// Declare numeric attributes
attrs = new FastVector(6);
attrs.addElement(new Attribute("houseSize"));
attrs.addElement(new Attribute("lotSize"));
attrs.addElement(new Attribute("bedrooms"));
attrs.addElement(new Attribute("granite"));
attrs.addElement(new Attribute("bathroom"));
attrs.addElement(new Attribute("sellingPrice"));
// add the instance
createTrainingSet();
// Create a LinearRegression classifier
Classifier cModel = new LinearRegression();
cModel.buildClassifier(isTrainingSet);
// Print the result à la Weka explorer:
System.out.println(cModel.toString());
// TestWeka the model
Evaluation eTest = new Evaluation(isTrainingSet);
eTest.evaluateModel(cModel, isTrainingSet);
// Print the result à la Weka explorer:
System.out.println(eTest.toSummaryString());
// Specify that the instance belong to the training set
// in order to inherit from the set description
Instance iUse = createInstance(3198, 9669, 5, 0, 1, 0);
iUse.setDataset(isTrainingSet);
// Get the likelihood of each classes
double[] fDistribution = cModel.distributionForInstance(iUse);
System.out.println(fDistribution[0]);
}