當前位置: 首頁>>代碼示例>>Java>>正文


Java Evaluation.pctCorrect方法代碼示例

本文整理匯總了Java中weka.classifiers.Evaluation.pctCorrect方法的典型用法代碼示例。如果您正苦於以下問題:Java Evaluation.pctCorrect方法的具體用法?Java Evaluation.pctCorrect怎麽用?Java Evaluation.pctCorrect使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在weka.classifiers.Evaluation的用法示例。


在下文中一共展示了Evaluation.pctCorrect方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: evaluate

import weka.classifiers.Evaluation; //導入方法依賴的package包/類
public static void evaluate(Classifier clf, Instances data, double minPerfomance)
    throws Exception {
  Instances[] split = TestUtil.splitTrainTest(data);

  Instances train = split[0];
  Instances test = split[1];

  clf.buildClassifier(train);
  Evaluation trainEval = new Evaluation(train);
  trainEval.evaluateModel(clf, train);

  Evaluation testEval = new Evaluation(train);
  testEval.evaluateModel(clf, test);

  final double testPctCorrect = testEval.pctCorrect();
  final double trainPctCorrect = trainEval.pctCorrect();

  log.info("Train: {}, Test: {}", trainPctCorrect, testPctCorrect);
  boolean success =
      testPctCorrect > minPerfomance && trainPctCorrect > minPerfomance;
  Assert.assertTrue(success);
}
 
開發者ID:Waikato,項目名稱:wekaDeeplearning4j,代碼行數:23,代碼來源:StabilityTest.java

示例2: getMetricScore

import weka.classifiers.Evaluation; //導入方法依賴的package包/類
public double getMetricScore(Evaluation eval, PerformanceMetric metric) {
    if (metric.getName().equals("accuracy")) {
        return eval.pctCorrect();
    } else if (metric.getName().equals("auc")) {
        return eval.areaUnderROC(0);
    } else if (metric.getName().equals("rmse")) {
        return eval.rootMeanSquaredError();
    } else if (metric.getName().equals("mae")) {
        return eval.meanAbsoluteError();
    } else if (metric.getName().equals("logLoss")) {
        return eval.SFMeanSchemeEntropy();
    } else if (metric.getName().equals("rmsle")) {
        return eval.rootMeanSquaredLogError();
    }
    throw new RuntimeException(this.getClass().getName() + "impl me please: " + metric.getName());
}
 
開發者ID:williamClanton,項目名稱:jbossBA,代碼行數:17,代碼來源:WekaApacheEngine.java

示例3: getCrossValidation

import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
 * @param cls
 * @param data
 * @param folds
 * @return [0] = pctCorrect, [1] = pctIncorrect
 * @throws Exception
 */
public double[] getCrossValidation(Classifier cls, Instances data, int folds) throws Exception {

	cls.buildClassifier(data);

	Classifier copy = Classifier.makeCopy(cls);
	double[] results = new double[2];
	for (int n = 0; n < folds; n++) {
		Instances train = data.trainCV(folds, n);
		Instances test = data.testCV(folds, n);

		// CSVSaver saver = new CSVSaver();
		// saver.setInstances(train);
		// saver.setFile(new File("../data.csv"));
		// saver.writeBatch();

		cls.buildClassifier(train);
		Evaluation eval = new Evaluation(data);
		eval.evaluateModel(cls, test);
		results[0] = results[0] + (eval.pctCorrect() / 100);
		results[1] = results[1] + (eval.pctIncorrect() / 100);
	}

	cls = copy;
	results[0] = results[0] / folds;
	results[1] = results[1] / folds;
	return results;
}
 
開發者ID:gsi-upm,項目名稱:BARMAS,代碼行數:35,代碼來源:ClassifiersValidation.java

示例4: getValidation

import weka.classifiers.Evaluation; //導入方法依賴的package包/類
/**
 * @param cls
 * @param trainingData
 * @param testData
 * @return [0] = pctCorrect, [1] = pctIncorrect
 * @throws Exception
 */
public double[] getValidation(Classifier cls, Instances trainingData, Instances testData)
		throws Exception {

	cls.buildClassifier(trainingData);

	Evaluation eval = new Evaluation(trainingData);
	eval.evaluateModel(cls, testData);

	double[] results = new double[2];
	results[0] = eval.pctCorrect() / 100;
	results[1] = eval.pctIncorrect() / 100;
	return results;
}
 
開發者ID:gsi-upm,項目名稱:BARMAS,代碼行數:21,代碼來源:ClassifiersValidation.java

示例5: crossValidate

import weka.classifiers.Evaluation; //導入方法依賴的package包/類
public double crossValidate(Classifier cls, Instances data)	throws Exception {

		double pctCorrect;
		
		Evaluation eval = new Evaluation(data);
		StringBuffer forPredictionsPrinting = new StringBuffer();
		PlainText classifierOutput = new PlainText();

		classifierOutput.setBuffer(forPredictionsPrinting);
		weka.core.Range attsToOutput = null;
		Boolean outputDistribution = new Boolean(true);
		classifierOutput.setOutputDistribution(true);

		eval.crossValidateModel(cls, data, 10, new Random(1), classifierOutput,
				attsToOutput, outputDistribution);

		System.out.println("Number of correct classified " + eval.correct());
		System.out.println("Percentage of correct classified "
				+ eval.pctCorrect());
		System.out.println(eval.toClassDetailsString());
		System.out.println(eval.toMatrixString());

		System.out.println(eval.toSummaryString());
		pctCorrect = eval.pctCorrect()/100;
		
		return pctCorrect;
	}
 
開發者ID:socialsensor,項目名稱:computational-verification,代碼行數:28,代碼來源:VerifHandler.java

示例6: getScore

import weka.classifiers.Evaluation; //導入方法依賴的package包/類
public float getScore(Evaluation eval, Instances testingData){
    return (float)(100 - eval.pctCorrect()); 
}
 
開發者ID:dsibournemouth,項目名稱:autoweka,代碼行數:4,代碼來源:ClassifierResult.java


注:本文中的weka.classifiers.Evaluation.pctCorrect方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。