當前位置: 首頁>>代碼示例>>Java>>正文


Java Imgproc.equalizeHist方法代碼示例

本文整理匯總了Java中org.opencv.imgproc.Imgproc.equalizeHist方法的典型用法代碼示例。如果您正苦於以下問題:Java Imgproc.equalizeHist方法的具體用法?Java Imgproc.equalizeHist怎麽用?Java Imgproc.equalizeHist使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.opencv.imgproc.Imgproc的用法示例。


在下文中一共展示了Imgproc.equalizeHist方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: enhanceImageContrast

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
public void enhanceImageContrast() {
    Mat source = Imgcodecs.imread("GrayScaleParrot.png",
            Imgcodecs.CV_LOAD_IMAGE_GRAYSCALE);
    Mat destination = new Mat(source.rows(), source.cols(), source.type());
    Imgproc.equalizeHist(source, destination);
    Imgcodecs.imwrite("enhancedParrot.jpg", destination);
}
 
開發者ID:PacktPublishing,項目名稱:Machine-Learning-End-to-Endguide-for-Java-developers,代碼行數:8,代碼來源:OpenCVNonMavenExamples.java

示例2: preprocess

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
static Bitmap preprocess(Mat frame, int width, int height) {
    // convert to grayscale
    Mat frameGrey = new Mat(height, width, CvType.CV_8UC1);
    Imgproc.cvtColor(frame, frameGrey, Imgproc.COLOR_BGR2GRAY, 1);

    // rotate
    Mat rotatedFrame = new Mat(width, height, frameGrey.type());
    Core.transpose(frameGrey, rotatedFrame);
    Core.flip(rotatedFrame, rotatedFrame, Core.ROTATE_180);

    // resize to match the surface view
    Mat resizedFrame = new Mat(width, height, rotatedFrame.type());
    Imgproc.resize(rotatedFrame, resizedFrame, new Size(width, height));

    // crop
    Mat ellipseMask = getEllipseMask(width, height);
    Mat frameCropped = new Mat(resizedFrame.rows(), resizedFrame.cols(), resizedFrame.type(), new Scalar(0));
    resizedFrame.copyTo(frameCropped, ellipseMask);

    // histogram equalisation
    Mat frameHistEq = new Mat(frame.rows(), frameCropped.cols(), frameCropped.type());
    Imgproc.equalizeHist(frameCropped, frameHistEq);

    // convert back to rgba
    Mat frameRgba = new Mat(frameHistEq.rows(), frameHistEq.cols(), CvType.CV_8UC4);
    Imgproc.cvtColor(frameHistEq, frameRgba, Imgproc.COLOR_GRAY2RGBA);

    // crop again to correct alpha
    Mat frameAlpha = new Mat(frameRgba.rows(), frameRgba.cols(), CvType.CV_8UC4, new Scalar(0, 0, 0, 0));
    frameRgba.copyTo(frameAlpha, ellipseMask);

    // convert to bitmap
    Bitmap bmp = Bitmap.createBitmap(frameAlpha.cols(), frameAlpha.rows(), Bitmap.Config.ARGB_4444);
    Utils.matToBitmap(frameAlpha, bmp);

    return bmp;
}
 
開發者ID:jorenham,項目名稱:fingerblox,代碼行數:38,代碼來源:ImageProcessing.java

示例3: getOpenCvLines

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
public static List<Line> getOpenCvLines(Mat original, int scale, double minLength) {
    Mat raw = new Mat();
    Imgproc.resize(original.clone(), raw, new Size((int) (original.size().width/scale), (int) (original.size().height/scale)));
    if(raw.channels() > 1) {
        Imgproc.cvtColor(raw, raw, Imgproc.COLOR_RGB2GRAY);
    }
    Imgproc.equalizeHist(raw, raw);
    Imgproc.blur(raw, raw, new Size(3,3));
    //Line Segment Detection 2
    Mat linesM1 = new Mat();
    //LineSegmentDetector detector = Imgproc.createLineSegmentDetector(Imgproc.LSD_REFINE_ADV, 0.6, 0.3, 2.6, 22.5, 0, 0.3,256);
    //LineSegmentDetector detector = Imgproc.createLineSegmentDetector(Imgproc.LSD_REFINE_STD, 0.5, 0.4,2.0, 19.5, 0, 0.6, 32);
    //Reference for final glyph detection

    detector.detect(raw, linesM1);
    ArrayList<Line> lines = new ArrayList<Line>();
    for (int x = 0; x < linesM1.rows(); x++)  {
        double[] vec = linesM1.get(x, 0);
        Point start = new Point(vec[0],vec[1]);
        Point end = new Point(vec[2], vec[3]);
        Line line = new Line(start, end);
        line = new Line(new Point((int)line.x1*scale, (int) line.y1*scale), new Point((int)line.x2*scale, (int)line.y2*scale));
        if(line.length() > minLength) lines.add(line);
    }

    raw.release();
    linesM1.release();

    return lines;
}
 
開發者ID:GTHSRobotics,項目名稱:DogeCV,代碼行數:31,代碼來源:Lines.java

示例4: detectAndDisplay

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
/**
 * Method for face detection and tracking
 * 
 * @param frame
 *            it looks for faces in this frame
 */
private void detectAndDisplay(Mat frame)
{
	MatOfRect faces = new MatOfRect();
	Mat grayFrame = new Mat();
	
	// convert the frame in gray scale
	Imgproc.cvtColor(frame, grayFrame, Imgproc.COLOR_BGR2GRAY);
	// equalize the frame histogram to improve the result
	Imgproc.equalizeHist(grayFrame, grayFrame);
	
	// compute minimum face size (20% of the frame height, in our case)
	if (this.absoluteFaceSize == 0)
	{
		int height = grayFrame.rows();
		if (Math.round(height * 0.2f) > 0)
		{
			this.absoluteFaceSize = Math.round(height * 0.2f);
		}
	}
	
	// detect faces
	this.faceCascade.detectMultiScale(grayFrame, faces, 1.1, 2, 0 | Objdetect.CASCADE_SCALE_IMAGE,
			new Size(this.absoluteFaceSize, this.absoluteFaceSize), new Size());
			
	// each rectangle in faces is a face: draw them!
	Rect[] facesArray = faces.toArray();
	for (int i = 0; i < facesArray.length; i++)
	{
		Imgproc.rectangle(frame, facesArray[i].tl(), facesArray[i].br(), new Scalar(7, 255, 90), 4);
		System.out.println(facesArray[i].tl());	
		System.out.println(facesArray[i].br());	
	}
	
		
	

}
 
開發者ID:MeAnupSarkar,項目名稱:ExoVisix,代碼行數:44,代碼來源:FaceDetectionController.java

示例5: computeModel

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
public void computeModel(ArrayList<MetaData> photos)
{
	numPhotos = photos.size();
	model.setNumPhotos(numPhotos);

	MatOfKeyPoint[] keypoints = new MatOfKeyPoint[numPhotos];
	Mat[] descriptors = new Mat[numPhotos];
	Mat allDescriptors = new Mat();
	ArrayList<Integer> descriptorLabels = new ArrayList<Integer>();

	// compute keypoints and descriptors
	Mat currentImg = null;
	for (int a = 0; a < numPhotos; a++)
	{
		// System.out.println("now:" + animalFiles.get(a));
		currentImg = Highgui.imread(photos.get(a).getZooName().toString(), 0);
		Imgproc.resize(currentImg, currentImg, new Size(150, 250));
		Imgproc.equalizeHist(currentImg, currentImg);
		Imgproc.threshold(currentImg, currentImg, 127, 255, Imgproc.THRESH_BINARY);

		featureDetector.detect(currentImg, keypoints[a]);
		descriptorExtractor.compute(currentImg, keypoints[a], descriptors[a]);

		allDescriptors.push_back(descriptors[a]);

		for (int i = 0; i < descriptors[a].rows(); i++)
			descriptorLabels.add(a);
	}
	System.out.println("label size:" + descriptorLabels.size());

	Mat clusterLabels = new Mat();
	Mat centers = new Mat();

	// set up all desriptors, init criteria
	allDescriptors.convertTo(allDescriptors, CvType.CV_32F);
	TermCriteria criteria = new TermCriteria(TermCriteria.EPS + TermCriteria.MAX_ITER, 100, 0.1);
	long before = System.currentTimeMillis();
	
	// compute clusters
	System.out.print("creating kmeans clusters...");
	Core.kmeans(allDescriptors, k, clusterLabels, criteria, 10, Core.KMEANS_PP_CENTERS, centers);
	System.out.println("done.");

	// map k-means centroid labels to descriptors of all images
	ArrayList<ArrayList<Integer>> clusterImageMap = new ArrayList<ArrayList<Integer>>();
	for (int nk = 0; nk < k + 1; nk++)
		clusterImageMap.add(new ArrayList<Integer>());
	for (int r = 0; r < clusterLabels.rows(); r++)
		clusterImageMap.get((int) clusterLabels.get(r, 0)[0]).add(descriptorLabels.get(r));

	model.setCentroids(centers);
	model.setLabels(clusterLabels);
	model.setClusterImageMap(clusterImageMap);
	model.setKeypoints(keypoints);
	model.setDescriptors(descriptors);

}
 
開發者ID:fossasia,項目名稱:zooracle,代碼行數:58,代碼來源:KMeansMatcher.java

示例6: detectAndDisplay

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
private void detectAndDisplay(final Mat frame, boolean grayIsAlreadySelected) {
    MatOfRect faces = new MatOfRect();
    Mat grayFrame = new Mat();

    if (grayIsAlreadySelected) {
        LOGGER.warn("TODO IT :-)");
    } else {
        // convert the frame in gray scale to ANOTHER frame
        Imgproc.cvtColor(frame, grayFrame, Imgproc.COLOR_BGR2GRAY);
    }

    // equalize the frame histogram to improve the result
    Imgproc.equalizeHist(grayFrame, grayFrame);

    // compute minimum face size (20% of the frame height, in our case)
    if (absoluteAreaSize == 0) {
        int height = grayFrame.rows();
        if (Math.round(height * 0.2f) > 0) {
            absoluteAreaSize = Math.round(height * 0.2f);
        }
    }

    // detect faces
    /*
    The detectMultiScale function detects objects of different sizes in the input image.
    The detected objects are returned as a list of rectangles. The parameters are:
        image Matrix of the type CV_8U containing an image where objects are detected.
        objects Vector of rectangles where each rectangle contains the detected object.
        scaleFactor Parameter specifying how much the image size is reduced at each image scale.
        minNeighbors Parameter specifying how many neighbors each candidate rectangle should have to retain it.
        flags Parameter with the same meaning for an old cascade as in the function cvHaarDetectObjects. It is not used for a new cascade.
        minSize Minimum possible object size. Objects smaller than that are ignored.
        maxSize Maximum possible object size. Objects larger than that are ignored.
    So the result of the detection is going to be in the objects parameter or in our case faces.
     */
    CASCADE_CLASSIFIER.detectMultiScale(grayFrame, faces, 1.1, 2,
            0 | Objdetect.CASCADE_SCALE_IMAGE, new Size(absoluteAreaSize, absoluteAreaSize), new Size());

    /*
    each rectangle in faces is a face: draw them!
    Let’s put this result in an array of rects and draw them on the frame, by doing so we can display the detected face are.
    As you can see we selected the color green with a transparent background: Scalar(0, 255, 0, 255).
    .tl() and .br() stand for top-left and bottom-right and they represents the two opposite vertexes.
    The last parameter just set the thickness of the rectangle’s border.
     */
    final Rect[] facesArray = faces.toArray();
    countFaces(facesArray.length);
    for (Rect aFacesArray : facesArray)
        Imgproc.rectangle(frame, aFacesArray.tl(), aFacesArray.br(), new Scalar(0, 255, 0, 255), 3);
}
 
開發者ID:Evegen55,項目名稱:main_carauto_board,代碼行數:51,代碼來源:MagicTabController.java

示例7: grayEqualizeHist

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
/**
 * 
* @Title: grayEqualizeHist 
* @Description: 直方圖均衡化
* @param grayImg
* @return
* Mat 
* @throws
 */
public static Mat grayEqualizeHist(Mat grayImg) {
	//Mat gray = new Mat();
	//Imgproc.cvtColor(img, gray, Imgproc.COLOR_BGR2GRAY);
	Mat heqResult = new Mat(); // 直方圖均衡化
	Imgproc.equalizeHist(grayImg, heqResult);
	return heqResult;
}
 
開發者ID:IaHehe,項目名稱:classchecks,代碼行數:17,代碼來源:ImgprocessUtils.java


注:本文中的org.opencv.imgproc.Imgproc.equalizeHist方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。