當前位置: 首頁>>代碼示例>>Java>>正文


Java Imgproc類代碼示例

本文整理匯總了Java中org.opencv.imgproc.Imgproc的典型用法代碼示例。如果您正苦於以下問題:Java Imgproc類的具體用法?Java Imgproc怎麽用?Java Imgproc使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


Imgproc類屬於org.opencv.imgproc包,在下文中一共展示了Imgproc類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: gridDetection

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
public static void gridDetection(Mat img){
       List<MatOfPoint> contours = new ArrayList<>();
       Imgproc.findContours(img,contours,new Mat(),Imgproc.RETR_TREE,Imgproc.CHAIN_APPROX_SIMPLE);

       double maxArea = 0;
       MatOfPoint max_contour = new MatOfPoint();

       Iterator<MatOfPoint> iterator = contours.iterator();
       while (iterator.hasNext()){
           MatOfPoint contour = iterator.next();
           double area = Imgproc.contourArea(contour);
           if(area > maxArea){
               maxArea = area;
               max_contour = contour;
           }
       }

       double epsilon = 0.1*Imgproc.arcLength(new MatOfPoint2f(max_contour.toArray()),true);
       MatOfPoint2f approx = new MatOfPoint2f();
       Imgproc.approxPolyDP(new MatOfPoint2f(max_contour.toArray()),approx,epsilon,true);
	
	RotatedRect rect = Imgproc.minAreaRect(new MatOfPoint2f(max_contour.toArray()));
	
	Mat grid = Thresholding.orderPoints(approx);
	
	Thresholding.approx = approx;
	Thresholding.grid = grid;
	Thresholding.rect = rect;
}
 
開發者ID:Sanahm,項目名稱:SudoCAM-Ku,代碼行數:30,代碼來源:Thresholding.java

示例2: onCameraFrame

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
public Mat onCameraFrame(CvCameraViewFrame inputFrame) {
        final int viewMode = mViewMode;
        switch (viewMode) {
            case VIEW_MODE_OPTICAL_FLOW:
                mGray = inputFrame.gray();
                if(features.toArray().length==0){
                    int rowStep = 50, colStep = 100;
                    int nRows = mGray.rows()/rowStep, nCols = mGray.cols()/colStep;

//                    Log.d(TAG, "\nRows: "+nRows+"\nCols: "+nCols+"\n");

                    Point points[] = new Point[nRows*nCols];
                    for(int i=0; i<nRows; i++){
                        for(int j=0; j<nCols; j++){
                            points[i*nCols+j]=new Point(j*colStep, i*rowStep);
//                            Log.d(TAG, "\nRow: "+i*rowStep+"\nCol: "+j*colStep+"\n: ");
                        }
                    }

                    features.fromArray(points);

                    prevFeatures.fromList(features.toList());
                    mPrevGray = mGray.clone();
                    break;
                }

                nextFeatures.fromArray(prevFeatures.toArray());
                Video.calcOpticalFlowPyrLK(mPrevGray, mGray, prevFeatures, nextFeatures, status, err);

                List<Point> prevList=features.toList(), nextList=nextFeatures.toList();
                Scalar color = new Scalar(255);

                for(int i = 0; i<prevList.size(); i++){
//                    Core.circle(mGray, prevList.get(i), 5, color);
                    Imgproc.line(mGray, prevList.get(i), nextList.get(i), color);
                }

                mPrevGray = mGray.clone();
                break;
            case VIEW_MODE_KLT_TRACKER:
                mGray = inputFrame.gray();

                if(features.toArray().length==0){
                    Imgproc.goodFeaturesToTrack(mGray, features, 10, 0.01, 10);
                    Log.d(TAG, features.toList().size()+"");
                    prevFeatures.fromList(features.toList());
                    mPrevGray = mGray.clone();
//                    prevFeatures.fromList(nextFeatures.toList());
                    break;
                }

//                OpticalFlow(mPrevGray.getNativeObjAddr(), mGray.getNativeObjAddr(), prevFeatures.getNativeObjAddr(), nextFeatures.getNativeObjAddr());
                Video.calcOpticalFlowPyrLK(mPrevGray, mGray, prevFeatures, nextFeatures, status, err);
                List<Point> drawFeature = nextFeatures.toList();
//                Log.d(TAG, drawFeature.size()+"");
                for(int i = 0; i<drawFeature.size(); i++){
                    Point p = drawFeature.get(i);
                    Imgproc.circle(mGray, p, 5, new Scalar(255));
                }
                mPrevGray = mGray.clone();
                prevFeatures.fromList(nextFeatures.toList());
                break;
            default: mViewMode = VIEW_MODE_KLT_TRACKER;
        }

        return mGray;
    }
 
開發者ID:johnhany,項目名稱:MOAAP,代碼行數:68,代碼來源:MainActivity.java

示例3: adaptativeProcess

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
public static Mat adaptativeProcess(Mat img){
	Mat im = new Mat();
	Imgproc.threshold(img,im,120,255,Imgproc.THRESH_TRUNC);
	im = Thresholding.adaptativeThresholding(im);
	Imgproc.medianBlur(im,im,7);
	Mat threshImg = Thresholding.InvertImageColor(im);
	Thresholding.gridDetection(threshImg);
	
		Mat mat = Mat.zeros(4,2,CvType.CV_32F);
	mat.put(0,0,0); mat.put(0,1,512);
	mat.put(1,0,0); mat.put(1,1,0);
	mat.put(2,0,512); mat.put(2,1,0);
	mat.put(3,0,512); mat.put(3,1,512);
	
	mat = Imgproc.getPerspectiveTransform(Thresholding.grid,mat);
	
	Mat M = new Mat();
	
	Imgproc.warpPerspective(threshImg,M,mat, new Size(512,512));
	
	Imgproc.medianBlur(M,M,3);
	Imgproc.threshold(M,M,254,255,Imgproc.THRESH_BINARY);
	
	return Thresholding.InvertImageColor(M);
}
 
開發者ID:Sanahm,項目名稱:SudoCAM-Ku,代碼行數:26,代碼來源:Thresholding.java

示例4: match

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
public MatchResult match(Mat scene, Mat templ, Method method, Mat img) {
	
	int result_cols = scene.cols() - templ.cols() + 1;
	int result_rows = scene.rows() - templ.rows() + 1;
	Mat result = new Mat(result_rows, result_cols, CV_32FC1);
	Imgproc.matchTemplate(scene, templ, result, method.ordinal());
	//Core.normalize(result, result, 0, 1, 32,-1,new Mat());
		
	MinMaxLocResult mmr = Core.minMaxLoc(result);

	
	Point matchLoc;
	double maxVal;
	if (method.ordinal() == Imgproc.TM_SQDIFF
	        || method.ordinal() == Imgproc.TM_SQDIFF_NORMED) {
	    
		matchLoc = mmr.minLoc;
		maxVal = mmr.minVal;
	}
	else {
	    matchLoc = mmr.maxLoc;
	    maxVal = mmr.maxVal;
	}
	
	MatchResult currResult = new MatchResult(matchLoc.x +(templ.cols()/2),matchLoc.y +(templ.rows()/2),0,maxVal);
	return currResult;
}
 
開發者ID:Flash3388,項目名稱:FlashLib,代碼行數:28,代碼來源:CvTemplateMatcher.java

示例5: onCameraFrame

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
public Mat onCameraFrame(CvCameraViewFrame inputFrame) {

        mRgba = inputFrame.rgba();
        mGray = inputFrame.gray();

        if (mAbsoluteFaceSize == 0) {
            int height = mGray.rows();
            if (Math.round(height * mRelativeFaceSize) > 0) {
                mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);
            }
            mNativeDetector.setMinFaceSize(mAbsoluteFaceSize);
        }

        MatOfRect faces = new MatOfRect();

        if (mDetectorType == JAVA_DETECTOR) {
            if (mJavaDetector != null)
                mJavaDetector.detectMultiScale(mGray, faces, 1.1, 2, 2, // TODO: objdetect.CV_HAAR_SCALE_IMAGE
                        new Size(mAbsoluteFaceSize, mAbsoluteFaceSize), new Size());
        } else if (mDetectorType == NATIVE_DETECTOR) {
            if (mNativeDetector != null)
                mNativeDetector.detect(mGray, faces);
        } else {
            Log.e(TAG, "Detection method is not selected!");
        }

        Rect[] facesArray = faces.toArray();
        for (int i = 0; i < facesArray.length; i++) {
            Imgproc.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR, 3);
        }

        //轉置90度
        Mat rotateMat = Imgproc.getRotationMatrix2D(new Point(mRgba.rows() / 2, mRgba.cols() / 2), 90, 1);
        Imgproc.warpAffine(mRgba, mRgba, rotateMat, mRgba.size());

        //以y軸翻轉
        Core.flip(mRgba, mRgba, 1);

        return mRgba;
    }
 
開發者ID:vipycm,項目名稱:mao-android,代碼行數:41,代碼來源:FdActivity.java

示例6: showImage

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
public void showImage(Mat img) {
	if (SizeCustom) {
		Imgproc.resize(img, img, new Size(Height, Width));
	}
	// Highgui.imencode(".jpg", img, matOfByte);
	// byte[] byteArray = matOfByte.toArray();
	BufferedImage bufImage = null;
	try {
		// InputStream in = new ByteArrayInputStream(byteArray);
		// bufImage = ImageIO.read(in);
		bufImage = toBufferedImage(img);
		image.setImage(bufImage);
		Window.pack();
		label.updateUI();
		Window.setVisible(true);
	} catch (Exception e) {
		e.printStackTrace();
	}
}
 
開發者ID:IsaacChanghau,項目名稱:ImageEnhanceViaFusion,代碼行數:20,代碼來源:ImShow.java

示例7: rotate

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
/**
 * Rotate an image by an angle (counterclockwise)
 *
 * @param image Transform matrix
 * @param angle Angle to rotate by (counterclockwise) from -360 to 360
 */
public static void rotate(Mat image, double angle) {
    //Calculate size of new matrix
    double radians = Math.toRadians(angle);
    double sin = Math.abs(Math.sin(radians));
    double cos = Math.abs(Math.cos(radians));

    int newWidth = (int) (image.width() * cos + image.height() * sin);
    int newHeight = (int) (image.width() * sin + image.height() * cos);

    // rotating image
    Point center = new Point(newWidth / 2, newHeight / 2);
    Mat rotMatrix = Imgproc.getRotationMatrix2D(center, angle, 1.0); //1.0 means 100 % scale

    Size size = new Size(newWidth, newHeight);
    Imgproc.warpAffine(image, image, rotMatrix, image.size());
}
 
開發者ID:ykarim,項目名稱:FTC2016,代碼行數:23,代碼來源:Transform.java

示例8: normalProcess

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
public static Mat normalProcess(Mat img){
	Mat threshImg = Thresholding.InvertImageColor(img);
	Thresholding.gridDetection(threshImg);
	Mat mat = Mat.zeros(4,2,CvType.CV_32F);
	mat.put(0,0,0); mat.put(0,1,512);
	mat.put(1,0,0); mat.put(1,1,0);
	mat.put(2,0,512); mat.put(2,1,0);
	mat.put(3,0,512); mat.put(3,1,512);
	
	mat = Imgproc.getPerspectiveTransform(Thresholding.grid,mat);
	
	Mat M = new Mat();
	
	Imgproc.warpPerspective(threshImg,M,mat, new Size(512,512));
	return Thresholding.InvertImageColor(M);
}
 
開發者ID:Sanahm,項目名稱:SudoCAM-Ku,代碼行數:17,代碼來源:Thresholding.java

示例9: rgba

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
public Mat rgba() {
    Imgproc.cvtColor(mYuvFrameData, mRgba, Imgproc.COLOR_YUV2BGR_NV12, 4);
    if (mRotated != null) mRotated.release();
    mRotated = mRgba.t();
    Core.flip(mRotated, mRotated, 1);
    return mRotated;
}
 
開發者ID:jocstech,項目名稱:AndroidCameraSudokuSolver,代碼行數:8,代碼來源:PortraitCameraView.java

示例10: initDefaultCommand

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
public void initDefaultCommand() {
  	visionThread = new Thread(() -> {
	// Get the UsbCamera from CameraServer
	UsbCamera camera = CameraServer.getInstance().startAutomaticCapture();
	// Set the resolution
	camera.setResolution(640, 480);

	// Get a CvSink. This will capture Mats from the camera
	CvSink cvSink = CameraServer.getInstance().getVideo();
	// Setup a CvSource. This will send images back to the Dashboard
	CvSource outputStream = CameraServer.getInstance().putVideo("Rectangle", 640, 480);

	// Mats are very memory expensive. Lets reuse this Mat.
	Mat mat = new Mat();

	// This cannot be 'true'. The program will never exit if it is. This
	// lets the robot stop this thread when restarting robot code or
	// deploying.
	while (!Thread.interrupted()) {
		// Tell the CvSink to grab a frame from the camera and put it
		// in the source mat.  If there is an error notify the output.
		if (cvSink.grabFrame(mat) == 0) {
			// Send the output the error.
			outputStream.notifyError(cvSink.getError());
			// skip the rest of the current iteration
			continue;
		}
		// Put a rectangle on the image
		Imgproc.rectangle(mat, new Point(100, 100), new Point(400, 400),
				new Scalar(255, 255, 255), 5);
		// Give the output stream a new image to display
		outputStream.putFrame(mat);
	}
});
visionThread.setDaemon(true);
visionThread.start();
  }
 
開發者ID:FRC6706,項目名稱:FRC6706_JAVA2017,代碼行數:38,代碼來源:VisionSubsystem2.java

示例11: calWeight

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
private static Mat calWeight(Mat img) {
	Mat L = new Mat();
	img.convertTo(img, CvType.CV_8UC1);
	Imgproc.cvtColor(img, L, Imgproc.COLOR_BGR2GRAY);
	L.convertTo(L, CvType.CV_32F);
	Core.divide(L, new Scalar(255.0), L);
	// calculate Luminance weight
	Mat WC = FeatureWeight.LuminanceWeight(img, L);
	WC.convertTo(WC, L.type());
	// calculate the Saliency weight
	Mat WS = FeatureWeight.Saliency(img);
	WS.convertTo(WS, L.type());
	// calculate the Exposedness weight
	Mat WE = FeatureWeight.Exposedness(L);
	WE.convertTo(WE, L.type());
	// sum
	Mat weight = WC.clone();
	Core.add(weight, WS, weight);
	Core.add(weight, WE, weight);
	return weight;
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:22,代碼來源:RemoveBackScatter.java

示例12: Saliency

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
public static Mat Saliency(Mat img) {
	// blur image with a 3x3 or 5x5 Gaussian filter
	Mat gfbgr = new Mat();
	Imgproc.GaussianBlur(img, gfbgr, new Size(3, 3), 3);
	// Perform sRGB to CIE Lab color space conversion
	Mat LabIm = new Mat();
	Imgproc.cvtColor(gfbgr, LabIm, Imgproc.COLOR_BGR2Lab);
	// Compute Lab average values (note that in the paper this average is found from the
	// un-blurred original image, but the results are quite similar)
	List<Mat> lab = new ArrayList<>();
	Core.split(LabIm, lab);
	Mat l = lab.get(0);
	l.convertTo(l, CvType.CV_32F);
	Mat a = lab.get(1);
	a.convertTo(a, CvType.CV_32F);
	Mat b = lab.get(2);
	b.convertTo(b, CvType.CV_32F);
	double lm = Core.mean(l).val[0];
	double am = Core.mean(a).val[0];
	double bm = Core.mean(b).val[0];
	// Finally compute the saliency map
	Mat sm = Mat.zeros(l.rows(), l.cols(), l.type());
	Core.subtract(l, new Scalar(lm), l);
	Core.subtract(a, new Scalar(am), a);
	Core.subtract(b, new Scalar(bm), b);
	Core.add(sm, l.mul(l), sm);
	Core.add(sm, a.mul(a), sm);
	Core.add(sm, b.mul(b), sm);
	return sm;
}
 
開發者ID:IsaacChanghau,項目名稱:OptimizedImageEnhance,代碼行數:31,代碼來源:FeatureWeight.java

示例13: getInputDataLeNet

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
private float[] getInputDataLeNet(Bitmap bitmap) {
    final int INPUT_LENGTH = 28;

    Mat imageMat = new Mat();
    Mat inputMat = new Mat();

    Utils.bitmapToMat(bitmap, imageMat);

    // convert the image to 28 * 28, grayscale, 0~1, and smaller means whiter
    Imgproc.cvtColor(imageMat, imageMat, Imgproc.COLOR_RGBA2GRAY);
    imageMat = centerCropAndScale(imageMat, INPUT_LENGTH);
    imageMat.convertTo(imageMat, CvType.CV_32F, 1. / 255);
    Core.subtract(Mat.ones(imageMat.size(), CvType.CV_32F), imageMat, inputMat);

    float[] inputData = new float[inputMat.width() * inputMat.height()];

    inputMat.get(0, 0, inputData);

    return inputData;
}
 
開發者ID:daquexian,項目名稱:DNNLibrary,代碼行數:21,代碼來源:MainActivity.java

示例14: conv_Mat

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
private Mat conv_Mat(BufferedImage img) {
    byte[] data = ((DataBufferByte) img.getRaster().getDataBuffer()).getData();
    Mat mat = new Mat(img.getHeight(), img.getWidth(), CvType.CV_8UC3);
    mat.put(0, 0, data);
    Mat mat1 = new Mat(img.getHeight(), img.getWidth(), CvType.CV_8UC3);
    Imgproc.cvtColor(mat, mat1, Imgproc.COLOR_RGB2HSV);

    return mat1;
}
 
開發者ID:javaspecial,項目名稱:Face-detection-and-recognition-desktop-application,代碼行數:10,代碼來源:FaceDetectCropTest.java

示例15: run

import org.opencv.imgproc.Imgproc; //導入依賴的package包/類
public void run() {
  System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
  String base = "C:/Books in Progress/Java for Data Science/Chapter 10/OpenCVExamples/src/resources";
  CascadeClassifier faceDetector = 
          new CascadeClassifier(base + "/lbpcascade_frontalface.xml");
  
  Mat image = Imgcodecs.imread(base + "/images.jpg");

  MatOfRect faceVectors = new MatOfRect();
  faceDetector.detectMultiScale(image, faceVectors);

  out.println(faceVectors.toArray().length + " faces found");

  for (Rect rect : faceVectors.toArray()) {
      Imgproc.rectangle(image, new Point(rect.x, rect.y), 
              new Point(rect.x + rect.width, rect.y + rect.height), 
              new Scalar(0, 255, 0));
  }
  Imgcodecs.imwrite("faceDetection.png", image);
}
 
開發者ID:PacktPublishing,項目名稱:Java-Data-Science-Made-Easy,代碼行數:21,代碼來源:DetectFaceDemo.java


注:本文中的org.opencv.imgproc.Imgproc類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。