當前位置: 首頁>>代碼示例>>Java>>正文


Java Imgproc.adaptiveThreshold方法代碼示例

本文整理匯總了Java中org.opencv.imgproc.Imgproc.adaptiveThreshold方法的典型用法代碼示例。如果您正苦於以下問題:Java Imgproc.adaptiveThreshold方法的具體用法?Java Imgproc.adaptiveThreshold怎麽用?Java Imgproc.adaptiveThreshold使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.opencv.imgproc.Imgproc的用法示例。


在下文中一共展示了Imgproc.adaptiveThreshold方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: FindMatch

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
int FindMatch(Mat test_image) {
        Imgproc.dilate(test_image, test_image,
                Imgproc.getStructuringElement(Imgproc.CV_SHAPE_CROSS,
                        new Size(3,3)));
        // Resize the image
        Imgproc.resize(test_image, test_image, new Size(width, height));
        // Convert the image to grayscale
//        Imgproc.cvtColor(test_image, test_image, Imgproc.COLOR_RGB2GRAY);
        // Adaptive Threshold
        Imgproc.adaptiveThreshold(test_image, test_image, 255, Imgproc.ADAPTIVE_THRESH_MEAN_C,
                Imgproc.THRESH_BINARY_INV, 15,2);

        Mat test = new Mat(1, test_image.rows() *
                        test_image.cols(), CvType.CV_32FC1);
        int count = 0;
        for (int i = 0 ; i < test_image.rows(); i++) {
            for (int j = 0; j < test_image.cols(); j++) {
                test.put(0, count, test_image.get(i, j)[0]);
                count++;
            }
        }

        Mat results = new Mat(1, 1, CvType.CV_8U);

        knn.find_nearest(test, 10, results, new Mat(), new Mat());
        Log.i("Result:", "" + results.get(0,0)[0]);

        return (int)(results.get(0,0)[0]);
    }
 
開發者ID:jocstech,項目名稱:AndroidCameraSudokuSolver,代碼行數:30,代碼來源:DigitRecognizer.java

示例2: setFilter

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
private void setFilter() {
    //Apply gaussian blur to remove noise
    Imgproc.GaussianBlur(image, image, new Size(5, 5), 0);

    //Threshold
    Imgproc.adaptiveThreshold(image, image, 255, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY, 7, 1);
    
    //Invert the image
    Core.bitwise_not(image, image);

    //Dilate
    Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_DILATE, new Size(3, 3), new Point(1, 1));
    Imgproc.dilate(image, image, kernel);
}
 
開發者ID:lupino22,項目名稱:kronometer,代碼行數:15,代碼來源:SketchRecognition.java

示例3: binarize

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
/**
* Method for image binarization
* @parm img image to process
* @parm flag precize which method to 
* @return imB binarized image
* @see org.opencv.imgproc.Imgproc #threshold(Mat,int)
*/
public static Mat binarize(Mat img, int flag){
	Mat imB = new Mat();
	if(flag == Imgproc.THRESH_BINARY)
		Imgproc.threshold(img,imB,0,255,Imgproc.THRESH_BINARY);
	if(flag == Imgproc.THRESH_OTSU)
		Imgproc.threshold(img,imB,0,255,Imgproc.THRESH_BINARY+Imgproc.THRESH_OTSU);
	if(flag == Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C)
		Imgproc.adaptiveThreshold(img,imB,255,Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C,Imgproc.THRESH_BINARY,7,2);
	if(flag == Imgproc.ADAPTIVE_THRESH_MEAN_C)
		Imgproc.adaptiveThreshold(img,imB,255,Imgproc.ADAPTIVE_THRESH_MEAN_C,Imgproc.THRESH_BINARY,7,2);
	return imB;
}
 
開發者ID:Sanahm,項目名稱:SudoCAM-Ku,代碼行數:20,代碼來源:Processing.java

示例4: processarAlgoritmo

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
public void processarAlgoritmo(String diretorioImagem, String nomeDaImagem) {
    Mat imagemOriginal = Imgcodecs.imread(diretorioImagem, Imgcodecs.CV_LOAD_IMAGE_GRAYSCALE);
    Mat imagemTratada = new Mat(imagemOriginal.rows(), imagemOriginal.cols(), imagemOriginal.type());
    imagemTratada = imagemOriginal;
    Imgproc.adaptiveThreshold(imagemOriginal, imagemTratada, 500, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 11, 1);
    Imgcodecs.imwrite(System.getProperty("user.home") + "/Desktop/" + nomeDaImagem + ".png", imagemTratada);
}
 
開發者ID:nbfontana,項目名稱:pdi,代碼行數:8,代碼來源:AlgoritmoLimiar.java

示例5: FindMatch

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
int FindMatch(Mat test_image)
{

    //Dilate the image
    Imgproc.dilate(test_image, test_image, Imgproc.getStructuringElement(Imgproc.CV_SHAPE_CROSS, new Size(3,3)));
    //Resize the image to match it with the sample image size
    Imgproc.resize(test_image, test_image, new Size(width, height));
    //Convert the image to grayscale
    Imgproc.cvtColor(test_image, test_image, Imgproc.COLOR_RGB2GRAY);
    //Adaptive Threshold
    Imgproc.adaptiveThreshold(test_image,test_image,255,Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY_INV,15, 2);

    Mat test = new Mat(1, test_image.rows() * test_image.cols(), CvType.CV_32FC1);
    int count = 0;
    for(int i = 0 ; i < test_image.rows(); i++)
    {
        for(int j = 0 ; j < test_image.cols(); j++) {
            test.put(0, count, test_image.get(i, j)[0]);
            count++;
        }
    }

    Mat results = new Mat(1, 1, CvType.CV_8U);

    //K-NN Prediction
    //return (int)knn.findNearest(test, 10, results);

    //SVM Prediction
    return (int)svm.predict(test);
}
 
開發者ID:johnhany,項目名稱:MOAAP,代碼行數:31,代碼來源:DigitRecognizer.java

示例6: adaptativeThresholding

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
public static Mat adaptativeThresholding(Mat img){
    Mat im = new Mat();
    Imgproc.medianBlur(img,im,5);
    Imgproc.adaptiveThreshold(im,img,255,Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C,Imgproc.THRESH_BINARY,21,2);
    return img;
}
 
開發者ID:Sanahm,項目名稱:SudoCAM-Ku,代碼行數:7,代碼來源:Thresholding.java

示例7: onActivityResult

import org.opencv.imgproc.Imgproc; //導入方法依賴的package包/類
@Override
protected void onActivityResult(int requestCode, int resultCode, Intent imageReturnedIntent) {
    //Put it there, just in case:)
    super.onActivityResult(requestCode, resultCode, imageReturnedIntent);

    switch(requestCode) {
        case SELECT_PHOTO:
            if(resultCode == RESULT_OK && read_external_storage_granted){
                try {
                    final Uri imageUri = imageReturnedIntent.getData();
                    final InputStream imageStream = getContentResolver().openInputStream(imageUri);
                    final Bitmap selectedImage = BitmapFactory.decodeStream(imageStream);
                    src = new Mat(selectedImage.getHeight(), selectedImage.getWidth(), CvType.CV_8UC4);
                    Utils.bitmapToMat(selectedImage, src);
                    src_gray = new Mat(selectedImage.getHeight(), selectedImage.getWidth(), CvType.CV_8UC1);
                    switch (ACTION_MODE) {
                        case HomeActivity.GAUSSIAN_BLUR:
                            Imgproc.GaussianBlur(src, src, new Size(9, 9), 0);
                            break;
                        case HomeActivity.MEAN_BLUR:
                            Imgproc.blur(src, src, new Size(9, 9));
                            break;
                        case HomeActivity.MEDIAN_BLUR:
                            Imgproc.medianBlur(src, src, 9);
                            break;
                        case HomeActivity.SHARPEN:
                            Mat kernel = new Mat(3, 3, CvType.CV_16SC1);
                            //int[] values = {0, -1, 0, -1, 5, -1, 0, -1, 0};
                            Log.d("imageType", CvType.typeToString(src.type()) + "");
                            kernel.put(0, 0, 0, -1, 0, -1, 5, -1, 0, -1, 0);
                            Imgproc.filter2D(src, src, src_gray.depth(), kernel);
                            break;
                        case HomeActivity.DILATE:
                            Imgproc.cvtColor(src, src_gray, Imgproc.COLOR_BGR2GRAY);
                            Imgproc.threshold(src_gray, src_gray, 100, 255, Imgproc.THRESH_BINARY);
                            Mat kernelDilate = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(3, 3));
                            Imgproc.dilate(src_gray, src_gray, kernelDilate);
                            Imgproc.cvtColor(src_gray, src, Imgproc.COLOR_GRAY2RGBA, 4);
                            break;
                        case HomeActivity.ERODE:
                            Imgproc.cvtColor(src, src_gray, Imgproc.COLOR_BGR2GRAY);
                            Imgproc.threshold(src_gray, src_gray, 100, 255, Imgproc.THRESH_BINARY);
                            Mat kernelErode = Imgproc.getStructuringElement(Imgproc.MORPH_ELLIPSE, new Size(5, 5));
                            Imgproc.erode(src_gray, src_gray, kernelErode);
                            Imgproc.cvtColor(src_gray, src, Imgproc.COLOR_GRAY2RGBA, 4);
                            break;
                        case HomeActivity.THRESHOLD:
                            Imgproc.cvtColor(src, src_gray, Imgproc.COLOR_BGR2GRAY);
                            Imgproc.threshold(src_gray, src_gray, 100, 255, Imgproc.THRESH_BINARY);
                            Imgproc.cvtColor(src_gray, src, Imgproc.COLOR_GRAY2RGBA, 4);
                            break;
                        case HomeActivity.ADAPTIVE_THRESHOLD:
                            Imgproc.cvtColor(src, src_gray, Imgproc.COLOR_BGR2GRAY);
                            Imgproc.adaptiveThreshold(src_gray, src_gray, 255, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C, Imgproc.THRESH_BINARY, 3, 0);
                            Imgproc.cvtColor(src_gray, src, Imgproc.COLOR_GRAY2RGBA, 4);
                            break;
                    }
                    Bitmap processedImage = Bitmap.createBitmap(src.cols(), src.rows(), Bitmap.Config.ARGB_8888);
                    Log.i("imageType", CvType.typeToString(src.type()) + "");
                    Utils.matToBitmap(src, processedImage);
                    ivImage.setImageBitmap(selectedImage);
                    ivImageProcessed.setImageBitmap(processedImage);
                    Log.i("process", "process done");
                } catch (FileNotFoundException e) {
                    e.printStackTrace();
                }
            }
            break;
    }
}
 
開發者ID:johnhany,項目名稱:MOAAP,代碼行數:71,代碼來源:MainActivity.java


注:本文中的org.opencv.imgproc.Imgproc.adaptiveThreshold方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。