本文整理匯總了Java中moa.core.DoubleVector.sumOfValues方法的典型用法代碼示例。如果您正苦於以下問題:Java DoubleVector.sumOfValues方法的具體用法?Java DoubleVector.sumOfValues怎麽用?Java DoubleVector.sumOfValues使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類moa.core.DoubleVector
的用法示例。
在下文中一共展示了DoubleVector.sumOfValues方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
/**
* Predicts a class for an example.
*/
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
if (this.trainingWeightSeenByModel > 0.0) {
for (int i = 0; i < this.ensemble.length; i++) {
if (this.ensembleWeights[i] > 0.0) {
DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
//scale weight and prevent overflow
vote.scaleValues(this.ensembleWeights[i] / (1.0 * this.ensemble.length + 1));
combinedVote.addValues(vote);
}
}
}
}
combinedVote.normalize();
return combinedVote.getArrayRef();
}
示例2: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
for (int i = 0; i < this.ensemble.length; i++) {
double memberWeight = getEnsembleMemberWeight(i);
if (memberWeight > 0.0) {
DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
vote.scaleValues(memberWeight);
combinedVote.addValues(vote);
}
} else {
break;
}
}
return combinedVote.getArrayRef();
}
示例3: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
for (int i = 0; i < this.ensemble.length; i++) {
double memberWeight = getEnsembleMemberWeight(i);
if (memberWeight > 0.0) {
DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
vote.scaleValues(memberWeight);
combinedVote.addValues(vote);
}
} else {
break;
}
}
return combinedVote.getArrayRef();
}
示例4: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
if (this.trainingWeightSeenByModel > 0.0) {
for (int i = 0; i < this.ensemble.length; i++) {
if (this.ensembleWeights[i] > 0.0) {
DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
vote.scaleValues(this.ensembleWeights[i]);
combinedVote.addValues(vote);
}
}
}
}
return combinedVote.getArrayRef();
}
示例5: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
@Override
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
StringBuilder sb = null;
if (VerbosityOption.getValue()>1)
sb=new StringBuilder();
for (int i = 0; i < this.ensemble.length; i++) {
DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(transformInstance(inst,i)));
if (VerbosityOption.getValue()>1)
sb.append(vote.getValue(0) + ", ");
if (this.isRegression == false && vote.sumOfValues() != 0.0){
vote.normalize();
}
combinedVote.addValues(vote);
}
if (this.isRegression == true){
combinedVote.scaleValues(1.0/this.ensemble.length);
}
if (VerbosityOption.getValue()>1){
sb.append(combinedVote.getValue(0) + ", ").append(inst.classValue());
System.out.println(sb.toString());
}
return combinedVote.getArrayRef();
}
示例6: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
/**
* Predicts a class for an example.
*/
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
if (this.trainingWeightSeenByModel > 0.0) {
for (int i = 0; i < this.learners.length; i++) {
if (this.weights[i][0] > 0.0) {
DoubleVector vote = new DoubleVector(this.learners[(int) this.weights[i][1]].getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
// scale weight and prevent overflow
vote.scaleValues(this.weights[i][0] / (1.0 * this.learners.length + 1.0));
combinedVote.addValues(vote);
}
}
}
}
//combinedVote.normalize();
return combinedVote.getArrayRef();
}
示例7: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
@Override
public double[] getVotesForInstance(Instance instance) {
Instance testInstance = instance.copy();
if(this.ensemble == null)
initEnsemble(testInstance);
DoubleVector combinedVote = new DoubleVector();
for(int i = 0 ; i < this.ensemble.length ; ++i) {
DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(testInstance));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
double acc = this.ensemble[i].evaluator.getPerformanceMeasurements()[1].getValue();
if(! this.disableWeightedVote.isSet() && acc > 0.0) {
for(int v = 0 ; v < vote.numValues() ; ++v) {
vote.setValue(v, vote.getValue(v) * acc);
}
}
combinedVote.addValues(vote);
}
}
return combinedVote.getArrayRef();
}
示例8: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
@Override
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
if (this.trainingWeightSeenByModel > 0.0) {
for (int i = 0; i < this.ensemble.size(); i++) {
if (this.ensembleWeights.get(i) > 0.0) {
DoubleVector vote = new DoubleVector(this.ensemble.get(i)
.getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
vote.scaleValues(this.ensembleWeights.get(i));
combinedVote.addValues(vote);
}
}
}
}
return combinedVote.getArrayRef();
}
示例9: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
/**
* Predicts a class for an example.
*/
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
if (this.trainingWeightSeenByModel > 0.0) {
for (int i = 0; i < this.ensemble.length; i++) {
if (this.weights[i][0] > 0.0) {
DoubleVector vote = new DoubleVector(this.ensemble[(int) this.weights[i][1]].classifier.getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
// scale weight and prevent overflow
vote.scaleValues(this.weights[i][0] / (1.0 * this.ensemble.length + 1.0));
combinedVote.addValues(vote);
}
}
}
}
//combinedVote.normalize();
return combinedVote.getArrayRef();
}
示例10: doNaiveBayesPrediction
import moa.core.DoubleVector; //導入方法依賴的package包/類
public static double[] doNaiveBayesPrediction(Instance inst,
DoubleVector observedClassDistribution,
AutoExpandVector<AttributeClassObserver> attributeObservers) {
double[] votes = new double[observedClassDistribution.numValues()];
double observedClassSum = observedClassDistribution.sumOfValues();
for (int classIndex = 0; classIndex < votes.length; classIndex++) {
votes[classIndex] = observedClassDistribution.getValue(classIndex)
/ observedClassSum;
for (int attIndex = 0; attIndex < inst.numAttributes() - 1; attIndex++) {
int instAttIndex = modelAttIndexToInstanceAttIndex(attIndex,
inst);
AttributeClassObserver obs = attributeObservers.get(attIndex);
if ((obs != null) && !inst.isMissing(instAttIndex)) {
votes[classIndex] *= obs.probabilityOfAttributeValueGivenClass(inst.value(instAttIndex), classIndex);
}
}
}
// TODO: need logic to prevent underflow?
return votes;
}
示例11: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
@Override
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
for (int i = 0; i < this.ensemble.length; i++) {
DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
combinedVote.addValues(vote);
}
}
return combinedVote.getArrayRef();
}
示例12: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
for (int i = 0; i < this.ensemble.length; i++) {
DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
if ((this.useWeightOption != null)
&& this.useWeightOption.isSet()) {
vote.scaleValues(1.0 / (this.error[i] * this.error[i]));
}
combinedVote.addValues(vote);
}
}
return combinedVote.getArrayRef();
}
示例13: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
@Override
public double[] getVotesForInstance(Instance inst) {
DoubleVector combinedVote = new DoubleVector();
ArrayList<Integer> arr;
int cmb = this.combinationOption.getChosenIndex();
if (cmb == 0)
arr = getMAXIndexes();
else
arr = getWVDIndexes();
if (this.trainingWeightSeenByModel > 0.0) {
for (int i = 0; i < arr.size(); i++) {
if (this.ensembleWeights[arr.get(i)].val > 0.0) {
DoubleVector vote = new DoubleVector(this.ensemble[arr.get(i)].getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
vote.scaleValues(this.ensembleWeights[arr.get(i)].val);
combinedVote.addValues(vote);
}
}
}
}
return combinedVote.getArrayRef();
}
示例14: getVotesForInstance
import moa.core.DoubleVector; //導入方法依賴的package包/類
@Override
public double[] getVotesForInstance(Instance inst) {
if (this.outputCodesOption.isSet()) {
return getVotesForInstanceBinary(inst);
}
DoubleVector combinedVote = new DoubleVector();
for (int i = 0; i < this.ensemble.length; i++) {
DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(inst));
if (vote.sumOfValues() > 0.0) {
vote.normalize();
combinedVote.addValues(vote);
}
}
return combinedVote.getArrayRef();
}
示例15: probabilityOfAttributeValueGivenClass
import moa.core.DoubleVector; //導入方法依賴的package包/類
@Override
public double probabilityOfAttributeValueGivenClass(double attVal,
int classVal) {
DoubleVector obs = this.attValDistPerClass.get(classVal);
return obs != null ? (obs.getValue((int) attVal) + 1.0)
/ (obs.sumOfValues() + obs.numValues()) : 0.0;
}