當前位置: 首頁>>代碼示例>>Java>>正文


Java DoubleVector類代碼示例

本文整理匯總了Java中moa.core.DoubleVector的典型用法代碼示例。如果您正苦於以下問題:Java DoubleVector類的具體用法?Java DoubleVector怎麽用?Java DoubleVector使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。


DoubleVector類屬於moa.core包,在下文中一共展示了DoubleVector類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: insertEntry

import moa.core.DoubleVector; //導入依賴的package包/類
public void insertEntry(LearningEvaluation learningEvaluation) {
    Measurement[] measurements = learningEvaluation.getMeasurements();
    Measurement orderMeasurement = Measurement.getMeasurementNamed(
            getOrderingMeasurementName(), measurements);
    if (orderMeasurement == null) {
        throw new IllegalArgumentException();
    }
    DoubleVector entryVals = new DoubleVector();
    for (Measurement measurement : measurements) {
        entryVals.setValue(addMeasurementName(measurement.getName()),
                measurement.getValue());
    }
    double orderVal = orderMeasurement.getValue();
    int index = 0;
    while ((index < this.measurementValues.size())
            && (orderVal > this.measurementValues.get(index)[0])) {
        index++;
    }
    this.measurementValues.add(index, entryVals.getArrayRef());
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:21,代碼來源:LearningCurve.java

示例2: getPredictionForInstance

import moa.core.DoubleVector; //導入依賴的package包/類
@Override
public Prediction getPredictionForInstance(MultiLabelInstance instance) {
	Prediction prediction=null;
               double [] votes= new double[instance.numClasses()];
               double vote;
	if (this.hasStarted){ 
		prediction=new MultiLabelPrediction(ensemble.length);
		DoubleVector combinedVote = new DoubleVector();
		for (int i = 0; i < this.ensemble.length; i++) {
                       vote= this.ensemble[i].getVotesForInstance(transformInstance(instance,i))[0];
			prediction.setVote(i, 0, vote);
		}
	}

	return prediction;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:17,代碼來源:BasicMultiLabelLearner.java

示例3: getVotesForInstance

import moa.core.DoubleVector; //導入依賴的package包/類
/**
 * Predicts a class for an example.
 */
public double[] getVotesForInstance(Instance inst) {
    DoubleVector combinedVote = new DoubleVector();

    if (this.trainingWeightSeenByModel > 0.0) {
        for (int i = 0; i < this.ensemble.length; i++) {
            if (this.ensembleWeights[i] > 0.0) {
                DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(inst));

                if (vote.sumOfValues() > 0.0) {
                    vote.normalize();
                    //scale weight and prevent overflow
                    vote.scaleValues(this.ensembleWeights[i] / (1.0 * this.ensemble.length + 1));
                    combinedVote.addValues(vote);
                }
            }
        }
    }
    combinedVote.normalize();
    return combinedVote.getArrayRef();
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:24,代碼來源:AccuracyWeightedEnsemble.java

示例4: getVotesForInstance

import moa.core.DoubleVector; //導入依賴的package包/類
public double[] getVotesForInstance(Instance inst) {
    DoubleVector combinedVote = new DoubleVector();
    if (this.trainingWeightSeenByModel > 0.0) {
        for (int i = 0; i < this.ensemble.length; i++) {
            if (this.ensembleWeights[i] > 0.0) {
                DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(inst));
                if (vote.sumOfValues() > 0.0) {
                    vote.normalize();
                    vote.scaleValues(this.ensembleWeights[i]);
                    combinedVote.addValues(vote);
                }
            }
        }
    }
    return combinedVote.getArrayRef();
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:17,代碼來源:WeightedMajorityAlgorithm.java

示例5: getVotesForInstance

import moa.core.DoubleVector; //導入依賴的package包/類
@Override
public double[] getVotesForInstance(Instance instance) {
    Instance testInstance = instance.copy();
    if(this.ensemble == null) 
        initEnsemble(testInstance);
    DoubleVector combinedVote = new DoubleVector();

    for(int i = 0 ; i < this.ensemble.length ; ++i) {
        DoubleVector vote = new DoubleVector(this.ensemble[i].getVotesForInstance(testInstance));
        if (vote.sumOfValues() > 0.0) {
            vote.normalize();
            double acc = this.ensemble[i].evaluator.getPerformanceMeasurements()[1].getValue();
            if(! this.disableWeightedVote.isSet() && acc > 0.0) {                        
                for(int v = 0 ; v < vote.numValues() ; ++v) {
                    vote.setValue(v, vote.getValue(v) * acc);
                }
            }
            combinedVote.addValues(vote);
        }
    }
    return combinedVote.getArrayRef();
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:23,代碼來源:AdaptiveRandomForest.java

示例6: getVotesForInstance

import moa.core.DoubleVector; //導入依賴的package包/類
/**
 * Predicts a class for an example.
 */
public double[] getVotesForInstance(Instance inst) {
	DoubleVector combinedVote = new DoubleVector();

	if (this.trainingWeightSeenByModel > 0.0) {
		for (int i = 0; i < this.ensemble.length; i++) {
			if (this.weights[i][0] > 0.0) {
				DoubleVector vote = new DoubleVector(this.ensemble[(int) this.weights[i][1]].classifier.getVotesForInstance(inst));

				if (vote.sumOfValues() > 0.0) {
					vote.normalize();
					// scale weight and prevent overflow
					vote.scaleValues(this.weights[i][0] / (1.0 * this.ensemble.length + 1.0));
					combinedVote.addValues(vote);
				}
			}
		}
	}
	
	//combinedVote.normalize();
	return combinedVote.getArrayRef();
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:25,代碼來源:OnlineAccuracyUpdatedEnsemble.java

示例7: getBestSplitSuggestions

import moa.core.DoubleVector; //導入依賴的package包/類
/**
 * Return the best split suggestions for this node using the given split criteria
 */
public AttributeExpansionSuggestion[] getBestSplitSuggestions(MultiLabelSplitCriterion criterion) {

	List<AttributeExpansionSuggestion> bestSuggestions = new LinkedList<AttributeExpansionSuggestion>();

	for (int i = 0; i < attributeObservers.size(); i++) {
		AttributeStatisticsObserver obs = attributeObservers.get(i);
		if (obs != null) {
			DoubleVector[] preSplitStatistics = new DoubleVector[tree.getModelContext().numOutputAttributes()];
			for (int j = 0; j < tree.getModelContext().numOutputAttributes(); j++) {
				preSplitStatistics[j] = new DoubleVector();
				preSplitStatistics[j].setValue(0, examplesSeen);
				preSplitStatistics[j].setValue(1, sumOfValues.getValue(j));
				preSplitStatistics[j].setValue(2, sumOfSquares.getValue(j));
			}

			AttributeExpansionSuggestion bestSuggestion = null;
			bestSuggestion = obs.getBestEvaluatedSplitSuggestion(criterion, preSplitStatistics, i);

			if (bestSuggestion != null) {
				bestSuggestions.add(bestSuggestion);
			}
		}
	}
	return bestSuggestions.toArray(new AttributeExpansionSuggestion[bestSuggestions.size()]);
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:29,代碼來源:ISOUPTree.java

示例8: getBranchesSplitMerits

import moa.core.DoubleVector; //導入依賴的package包/類
@Override
public double [] getBranchesSplitMerits(DoubleVector[][] postSplitDists){
	int numOutputs=postSplitDists.length;
	int numBranches=postSplitDists[0].length;
	double [] merits=new double[numBranches];
		for(int j=0; j<numOutputs;j++)
		{
			double [] branchMeritsOutput=getBranchSplitVarianceOutput(postSplitDists[j]);
			/* double weightTotal=0;
			for (int i=0; i<numBranches;i++){
				weightTotal+=postSplitDists[j][i].getValue(0)/weightTotal*postSplitDists[j][i].getValue(0);
			}
			for (int i=0; i<numBranches;i++){
				merits[i]+=postSplitDists[j][i].getValue(0)/weightTotal*branchMeritsOutput[i];
			}*/
			
			for (int i=0; i<numBranches;i++){
				if (postSplitDists[j][i].getValue(0)>0)
					merits[i]-=branchMeritsOutput[i];
				else
					merits[i]=-Double.MAX_VALUE;
			}
		}
	return merits;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:26,代碼來源:MultiTargetVarianceRatio.java

示例9: computeClassDistPerValue

import moa.core.DoubleVector; //導入依賴的package包/類
private void computeClassDistPerValue(double[][] classDistLower,
        double[][] classDistUpper) {
    double estimator, classDistError;

    int numberOfValues = classDistLower.length;
    int numberOfClasses = classDistLower[0].length;

    for (int i = 0; i < numberOfValues; i++) {
        for (int j = 0; j < numberOfClasses; j++) {
            if (attValueDist.getValue(i) == 0.0) {
                classDistLower[i][j] = 0.0;
                classDistUpper[i][j] = 1.0;
            } else {
                DoubleVector classCounter = nominalAttClassObserver.get(i);
                double attValuePerClassCounter = classCounter != null ? classCounter.getValue(j) : 0.0;
                estimator = attValuePerClassCounter / attValueDist.getValue(i);
                classDistError = IademCommonProcedures.getIADEM_HoeffdingBound(estimator, attValueDist.getValue(i));
                classDistLower[i][j] = Math.max(0.0, estimator - classDistError);
                classDistUpper[i][j] = Math.min(1.0, estimator + classDistError);
            }
        }
    }
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:24,代碼來源:Iadem2.java

示例10: getModelMeasurementsImpl

import moa.core.DoubleVector; //導入依賴的package包/類
/**
 * print GUI evaluate model	
 */
@Override
protected Measurement[] getModelMeasurementsImpl() {
	Measurement[] m=null;
	Measurement[] mNoFeatureRanking=new Measurement[]{
			new Measurement("anomaly detections", this.numAnomaliesDetected),
			new Measurement("change detections", this.numChangesDetected), 
			new Measurement("rules (number)", this.ruleSet.size()+1),
			new Measurement("Avg #inputs/rule", getAverageInputs()),
			new Measurement("Avg #outputs/rule", getAverageOutputs())}; 
	
	if(featureRanking instanceof NoFeatureRanking){
		m=mNoFeatureRanking;
	}
	else{
		m=new Measurement[mNoFeatureRanking.length+this.nAttributes];
		for(int i=0; i<mNoFeatureRanking.length; i++)
			m[i]=mNoFeatureRanking[i];
		DoubleVector rankings=this.featureRanking.getFeatureRankings();
		for(int i=0; i<this.nAttributes; i++)
			m[i+mNoFeatureRanking.length]=new Measurement("Attribute" + i, rankings.getValue(i));
	}
	return m;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:27,代碼來源:AMRulesMultiLabelLearnerSemiSuper.java

示例11: getBranchesSplitMerits

import moa.core.DoubleVector; //導入依賴的package包/類
@Override
public double [] getBranchesSplitMerits(DoubleVector[][] postSplitDists){
	
       int numOutputs=postSplitDists.length;
	int numBranches=postSplitDists[0].length; 
	double [] merits=new double[numBranches];
		for(int j=0; j<numOutputs;j++)
		{
			double [] branchMeritsOutput=getBranchSplitEntropyOutput(postSplitDists[j]);
			
			for (int i=0; i<numBranches;i++){
				if (postSplitDists[j][i].getValue(0)>0)
					merits[i]-=branchMeritsOutput[i];
				else
					merits[i]=-Double.MAX_VALUE;
			}
		}
	return merits;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:20,代碼來源:MultilabelInformationGain.java

示例12: dotProd

import moa.core.DoubleVector; //導入依賴的package包/類
protected static double dotProd(Instance inst1, DoubleVector weights, int classIndex) {
    double result = 0;

    int n1 = inst1.numValues();
    int n2 = weights.numValues();

    for (int p1 = 0, p2 = 0; p1 < n1 && p2 < n2;) {
        int ind1 = inst1.index(p1);
        int ind2 = p2;
        if (ind1 == ind2) {
            if (ind1 != classIndex && !inst1.isMissingSparse(p1)) {
                result += inst1.valueSparse(p1) * weights.getValue(p2);
            }
            p1++;
            p2++;
        } else if (ind1 > ind2) {
            p2++;
        } else {
            p1++;
        }
    }
    return (result);
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:24,代碼來源:SGDMultiClass.java

示例13: getFeatureRankings

import moa.core.DoubleVector; //導入依賴的package包/類
@Override
public DoubleVector getFeatureRankings() {
	/*DoubleVector normRankings=null;
	if(attributeImportance!=null){
		double total=0;
		for (int i=0; i<attributeImportance.numValues();i++)
			total+=attributeImportance.getValue(i);
		
		//
		normRankings=new DoubleVector();
		double[] aux= new double[attributeImportance.numValues()];
		for (int i=0; i<attributeImportance.numValues();i++)
			aux[i]=attributeImportance.getValue(i)/total;	
		normRankings= new DoubleVector(aux);
	}
	return normRankings;
	*/
	
	if(attributeImportance==null)
		return new DoubleVector();
	return attributeImportance;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:23,代碼來源:MeritFeatureRanking.java

示例14: getClassDistsResultingFromMultiwaySplit

import moa.core.DoubleVector; //導入依賴的package包/類
public double[][] getClassDistsResultingFromMultiwaySplit(
        int maxAttValsObserved) {
    DoubleVector[] resultingDists = new DoubleVector[maxAttValsObserved];
    for (int i = 0; i < resultingDists.length; i++) {
        resultingDists[i] = new DoubleVector();
    }
    for (int i = 0; i < this.attValDistPerClass.size(); i++) {
        DoubleVector attValDist = this.attValDistPerClass.get(i);
        if (attValDist != null) {
            for (int j = 0; j < attValDist.numValues(); j++) {
                resultingDists[j].addToValue(i, attValDist.getValue(j));
            }
        }
    }
    double[][] distributions = new double[maxAttValsObserved][];
    for (int i = 0; i < distributions.length; i++) {
        distributions[i] = resultingDists[i].getArrayRef();
    }
    return distributions;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:21,代碼來源:NominalAttributeClassObserver.java

示例15: getClassDistsResultingFromBinarySplit

import moa.core.DoubleVector; //導入依賴的package包/類
public double[][] getClassDistsResultingFromBinarySplit(double splitValue) {
    DoubleVector lhsDist = new DoubleVector();
    DoubleVector rhsDist = new DoubleVector();
    for (int i = 0; i < this.attValDistPerClass.size(); i++) {
        GaussianEstimator estimator = this.attValDistPerClass.get(i);
        if (estimator != null) {
            if (splitValue < this.minValueObservedPerClass.getValue(i)) {
                rhsDist.addToValue(i, estimator.getTotalWeightObserved());
            } else if (splitValue >= this.maxValueObservedPerClass.getValue(i)) {
                lhsDist.addToValue(i, estimator.getTotalWeightObserved());
            } else {
                double[] weightDist = estimator.estimatedWeight_LessThan_EqualTo_GreaterThan_Value(splitValue);
                lhsDist.addToValue(i, weightDist[0] + weightDist[1]);
                rhsDist.addToValue(i, weightDist[2]);
            }
        }
    }
    return new double[][]{lhsDist.getArrayRef(), rhsDist.getArrayRef()};
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:20,代碼來源:GaussianNumericAttributeClassObserver.java


注:本文中的moa.core.DoubleVector類示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。