當前位置: 首頁>>代碼示例>>Java>>正文


Java DoubleVector.getValue方法代碼示例

本文整理匯總了Java中moa.core.DoubleVector.getValue方法的典型用法代碼示例。如果您正苦於以下問題:Java DoubleVector.getValue方法的具體用法?Java DoubleVector.getValue怎麽用?Java DoubleVector.getValue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在moa.core.DoubleVector的用法示例。


在下文中一共展示了DoubleVector.getValue方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: computeClassDistPerValue

import moa.core.DoubleVector; //導入方法依賴的package包/類
private void computeClassDistPerValue(double[][] classDistLower,
        double[][] classDistUpper) {
    double estimator, classDistError;

    int numberOfValues = classDistLower.length;
    int numberOfClasses = classDistLower[0].length;

    for (int i = 0; i < numberOfValues; i++) {
        for (int j = 0; j < numberOfClasses; j++) {
            if (attValueDist.getValue(i) == 0.0) {
                classDistLower[i][j] = 0.0;
                classDistUpper[i][j] = 1.0;
            } else {
                DoubleVector classCounter = nominalAttClassObserver.get(i);
                double attValuePerClassCounter = classCounter != null ? classCounter.getValue(j) : 0.0;
                estimator = attValuePerClassCounter / attValueDist.getValue(i);
                classDistError = IademCommonProcedures.getIADEM_HoeffdingBound(estimator, attValueDist.getValue(i));
                classDistLower[i][j] = Math.max(0.0, estimator - classDistError);
                classDistUpper[i][j] = Math.min(1.0, estimator + classDistError);
            }
        }
    }
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:24,代碼來源:Iadem2.java

示例2: doNaiveBayesPrediction

import moa.core.DoubleVector; //導入方法依賴的package包/類
public static double[] doNaiveBayesPrediction(Instance inst,
        DoubleVector observedClassDistribution,
        AutoExpandVector<AttributeClassObserver> attributeObservers) {
    double[] votes = new double[observedClassDistribution.numValues()];
    double observedClassSum = observedClassDistribution.sumOfValues();
    for (int classIndex = 0; classIndex < votes.length; classIndex++) {
        votes[classIndex] = observedClassDistribution.getValue(classIndex)
                / observedClassSum;
        for (int attIndex = 0; attIndex < inst.numAttributes() - 1; attIndex++) {
            int instAttIndex = modelAttIndexToInstanceAttIndex(attIndex,
                    inst);
            AttributeClassObserver obs = attributeObservers.get(attIndex);
            if ((obs != null) && !inst.isMissing(instAttIndex)) {
                votes[classIndex] *= obs.probabilityOfAttributeValueGivenClass(inst.value(instAttIndex), classIndex);
            }
        }
    }
    // TODO: need logic to prevent underflow?
    return votes;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:21,代碼來源:NaiveBayes.java

示例3: getBestSecondBestEntropy

import moa.core.DoubleVector; //導入方法依賴的package包/類
protected double [] getBestSecondBestEntropy(DoubleVector entropy){
	double[] entropyValues = new double[2];
	double best = Double.MAX_VALUE;
	double secondBest = Double.MAX_VALUE;
	for (int i = 0; i < entropy.numValues(); i++) {
		if (entropy.getValue(i) < best) {
			secondBest = best;
			best = entropy.getValue(i);
		} else{
			if (entropy.getValue(i) < secondBest) {
				secondBest = entropy.getValue(i);
			}
		}
		}
	entropyValues[0] = best;
	entropyValues[1] = secondBest;
	
	return entropyValues;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:20,代碼來源:RuleClassifier.java

示例4: getModelMeasurementsImpl

import moa.core.DoubleVector; //導入方法依賴的package包/類
/**
 * print GUI evaluate model	
 */
@Override
protected Measurement[] getModelMeasurementsImpl() {
	Measurement[] m=null;
	Measurement[] mNoFeatureRanking=new Measurement[]{
			new Measurement("anomaly detections", this.numAnomaliesDetected),
			new Measurement("change detections", this.numChangesDetected), 
			new Measurement("rules (number)", this.ruleSet.size()+1),
			new Measurement("Avg #inputs/rule", getAverageInputs()),
			new Measurement("Avg #outputs/rule", getAverageOutputs())}; 
	
	if(featureRanking instanceof NoFeatureRanking){
		m=mNoFeatureRanking;
	}
	else{
		m=new Measurement[mNoFeatureRanking.length+this.nAttributes];
		for(int i=0; i<mNoFeatureRanking.length; i++)
			m[i]=mNoFeatureRanking[i];
		DoubleVector rankings=this.featureRanking.getFeatureRankings();
		for(int i=0; i<this.nAttributes; i++)
			m[i+mNoFeatureRanking.length]=new Measurement("Attribute" + i, rankings.getValue(i));
	}
	return m;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:27,代碼來源:AMRulesMultiLabelLearner.java

示例5: getMeritOfSplitForOutput

import moa.core.DoubleVector; //導入方法依賴的package包/類
protected double getMeritOfSplitForOutput(DoubleVector preSplitDist, DoubleVector[] postSplitDists) {
	double merit=0;
	//count number of branches with weightSeen higher than threshold
	int count = 0; 
	for(int i = 0; i < postSplitDists.length; i++)
		if(postSplitDists[i].getValue(0) >=0.05*preSplitDist.getValue(0))
			count = count +1;
	//Consider split if all branches have required weight seen
	if(count == postSplitDists.length){
		double varPreSplit=Utils.computeVariance(preSplitDist);
		double sumVarPostSplit=0;
		double weightTotal=0;
		for (int i=0; i<postSplitDists.length;i++){
			weightTotal+=postSplitDists[i].getValue(0);
		}
		double [] variances=getBranchSplitVarianceOutput(postSplitDists);
		for(int i = 0; i < variances.length; i++)
			if(postSplitDists[i].getValue(0)>0)
				sumVarPostSplit+=(postSplitDists[i].getValue(0)/weightTotal*variances[i]);  //weight variance
		merit=(1-sumVarPostSplit/varPreSplit);
	}
	/*if(merit<0 || merit>1)
		System.out.println("out of range");*/
	return merit;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:26,代碼來源:MultiTargetVarianceRatio.java

示例6: getMeritOfSplitForOutput

import moa.core.DoubleVector; //導入方法依賴的package包/類
protected double getMeritOfSplitForOutput(DoubleVector preSplitDist, DoubleVector[] postSplitDists) {
	double merit=0;
	//count number of branches with weightSeen higher than threshold
	int count = 0; 
	for(int i = 0; i < postSplitDists.length; i++)
		if(postSplitDists[i].getValue(0) >=0.05*preSplitDist.getValue(0))
			count = count +1;
	//Consider split if all branches have required weight seen
	if(count == postSplitDists.length){
		double varPreSplit=computeVariance(preSplitDist);
		double sumVarPostSplit=0;
		double weightTotal=0;
		for (int i=0; i<postSplitDists.length;i++){
			weightTotal+=postSplitDists[i].getValue(0);
		}
		double [] variances=getBranchSplitVarianceOutput(postSplitDists);
		for(int i = 0; i < variances.length; i++)
			if(postSplitDists[i].getValue(0)>0)
				sumVarPostSplit+=(postSplitDists[i].getValue(0)/weightTotal*variances[i]);  //weight variance
		merit= 1 - sumVarPostSplit / varPreSplit;
	}
	/*if(merit<0 || merit>1)
		System.out.println("out of range");*/
	return merit;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:26,代碼來源:ICVarianceReduction.java

示例7: dotProd

import moa.core.DoubleVector; //導入方法依賴的package包/類
protected static double dotProd(Instance inst1, DoubleVector weights, int classIndex) {
    double result = 0;

    int n1 = inst1.numValues();
    int n2 = weights.numValues();

    for (int p1 = 0, p2 = 0; p1 < n1 && p2 < n2;) {
        int ind1 = inst1.index(p1);
        int ind2 = p2;
        if (ind1 == ind2) {
            if (ind1 != classIndex && !inst1.isMissingSparse(p1)) {
                result += inst1.valueSparse(p1) * weights.getValue(p2);
            }
            p1++;
            p2++;
        } else if (ind1 > ind2) {
            p2++;
        } else {
            p1++;
        }
    }
    return (result);
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:24,代碼來源:SGDMultiClass.java

示例8: scalarProduct

import moa.core.DoubleVector; //導入方法依賴的package包/類
public double scalarProduct(DoubleVector u, DoubleVector v) {
	double ret = 0.0;
	for (int i = 0; i < Math.max(u.numValues(), v.numValues()); i++) {
		ret += u.getValue(i) * v.getValue(i);
	}
	return ret;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:8,代碼來源:FIMTDD.java

示例9: getNaiveBayesPrediction

import moa.core.DoubleVector; //導入方法依賴的package包/類
protected double[] getNaiveBayesPrediction(Instance obs) {
    double[] classVotes = getMajorityClassVotes(obs);
    DoubleVector condProbabilities;
    for (int i = 0; i < virtualChildren.size(); i++) {
        VirtualNode currentVirtualNode = virtualChildren.get(i);
        if (currentVirtualNode != null && currentVirtualNode.hasInformation()) {
            double valor = obs.value(i);
            condProbabilities = currentVirtualNode.computeConditionalProbability(valor);
            if (condProbabilities != null) {
                for (int j = 0; j < classVotes.length; j++) {
                    classVotes[j] *= condProbabilities.getValue(j);
                }
            }
        }
    }
    // normalize class votes
    double classVoteCount = 0.0;
    for (int i = 0; i < classVotes.length; i++) {
        classVoteCount += classVotes[i];
    }
    if (classVoteCount == 0.0) {
        for (int i = 0; i < classVotes.length; i++) {
            classVotes[i] = 1.0 / classVotes.length;
        }
    } else {
        for (int i = 0; i < classVotes.length; i++) {
            classVotes[i] /= classVoteCount;
        }
    }
    return classVotes;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:32,代碼來源:Iadem2.java

示例10: computeClassDistBinaryTest

import moa.core.DoubleVector; //導入方法依賴的package包/類
protected void computeClassDistBinaryTest(double[][][] classDistPerTestAndSplit_lower,
        double[][][] classDistPerTestAndSplit_upper) {
    int numberOfClasses = classDistPerTestAndSplit_lower[0][0].length;
    double estimator, bound;
    double leftTotal = this.classValueDist.sumOfValues();
    for (int currentAttIndex = 0; currentAttIndex < classDistPerTestAndSplit_lower.length; currentAttIndex++) {
        for (int j = 0; j < numberOfClasses; j++) {
            // compute probabilities in the left branch
            DoubleVector classCounter = nominalAttClassObserver.get(currentAttIndex);
            double attClassCounter = classCounter != null ? classCounter.getValue(j) : 0.0;
            if (attValueDist.getValue(currentAttIndex) != 0) {
                estimator = attClassCounter / attValueDist.getValue(currentAttIndex);
                bound = IademCommonProcedures.getIADEM_HoeffdingBound(estimator, attValueDist.getValue(currentAttIndex));
                classDistPerTestAndSplit_lower[currentAttIndex][0][j] = Math.max(0.0, estimator - bound);
                classDistPerTestAndSplit_upper[currentAttIndex][0][j] = Math.min(1.0, estimator + bound);
            } else {
                classDistPerTestAndSplit_lower[currentAttIndex][0][j] = 0.0;
                classDistPerTestAndSplit_upper[currentAttIndex][0][j] = 1.0;
            }
            // compute probabilities in the right branch
            attClassCounter = classValueDist.getValue(j) - attClassCounter;
            double rightTotal = leftTotal - attValueDist.getValue(currentAttIndex);
            if (rightTotal != 0) {
                estimator = attClassCounter / rightTotal;
                bound = IademCommonProcedures.getIADEM_HoeffdingBound(estimator, rightTotal);
                classDistPerTestAndSplit_lower[currentAttIndex][1][j] = Math.max(0.0, estimator - bound);
                classDistPerTestAndSplit_upper[currentAttIndex][1][j] = Math.min(1.0, estimator + bound);
            } else {
                classDistPerTestAndSplit_lower[currentAttIndex][1][j] = 0.0;
                classDistPerTestAndSplit_upper[currentAttIndex][1][j] = 1.0;
            }
        }
    }
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:35,代碼來源:Iadem2.java

示例11: getNaiveBayesPrediction

import moa.core.DoubleVector; //導入方法依賴的package包/類
protected double[] getNaiveBayesPrediction(Instance inst) {
    double[] classDist = getMajorityClassVotes(inst);
    DoubleVector conditionalProbability = null;
    for (int i = 0; i < virtualChildren.size(); i++) {
        VirtualNode virtual = virtualChildren.get(i);
        if (virtual != null && virtual.hasInformation()) {
            double currentValue = inst.value(i);
            conditionalProbability = virtual.computeConditionalProbability(currentValue);
            if (conditionalProbability != null) {
                for (int j = 0; j < classDist.length; j++) {
                    classDist[j] *= conditionalProbability.getValue(j);
                }
            }
        }
    }
    double sum = 0.0;
    for (int i = 0; i < classDist.length; i++) {
        sum += classDist[i];
    }
    if (sum == 0.0) {
        for (int i = 0; i < classDist.length; i++) {
            classDist[i] = 1.0 / classDist.length;
        }
    } else {
        for (int i = 0; i < classDist.length; i++) {
            classDist[i] /= sum;
        }
    }
    return classDist;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:31,代碼來源:Iadem3.java

示例12: oberversDistribProb

import moa.core.DoubleVector; //導入方法依賴的package包/類
protected double[] oberversDistribProb(Instance inst,
	DoubleVector classDistrib) {
double[] votes = new double[this.numClass];
double sum = classDistrib.sumOfValues();
for (int z = 0; z < this.numClass; z++) {
	votes[z] = classDistrib.getValue(z) / sum;
	}
return votes;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:10,代碼來源:RuleClassifier.java

示例13: getMeritOfSplitForOutput

import moa.core.DoubleVector; //導入方法依賴的package包/類
protected double getMeritOfSplitForOutput(DoubleVector preSplitDist, DoubleVector[] postSplitDists) {
	double merit=0;
   
	//count number of branches with weightSeen higher than threshold
	int count = 0; 
	for(int i = 0; i < postSplitDists.length; i++)
		if(postSplitDists[i].getValue(0) >=0.05*preSplitDist.getValue(0))
			count = count +1;
               
	//Consider split if all branches have required weight seen
	if(count == postSplitDists.length){
		
           double EntPreSplit=Utils.computeEntropy(preSplitDist);
		double sumEntPostSplit=0;
		double weightTotal=0;
		for (int i=0; i<postSplitDists.length;i++){
			weightTotal+=postSplitDists[i].getValue(0);
		}
		double [] Entropies=getBranchSplitEntropyOutput(postSplitDists);
      
		for(int i = 0; i < Entropies.length; i++)
			if(postSplitDists[i].getValue(0)>0)
				sumEntPostSplit+=(postSplitDists[i].getValue(0)/weightTotal*Entropies[i]);  //weight variance
                   merit=(EntPreSplit-sumEntPostSplit);
	}
	/*if(merit<0 || merit>1)
		System.out.println("out of range");*/
	return merit;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:30,代碼來源:MultilabelInformationGain.java

示例14: scalarProduct

import moa.core.DoubleVector; //導入方法依賴的package包/類
public static double scalarProduct(DoubleVector u, DoubleVector v) {
	double ret = 0.0;
	for (int i = 0; i < Math.max(u.numValues(), v.numValues()); i++) {
		ret += u.getValue(i) * v.getValue(i);
	}
	return ret;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:8,代碼來源:ISOUPTree.java

示例15: probabilityOfAttributeValueGivenClass

import moa.core.DoubleVector; //導入方法依賴的package包/類
@Override
public double probabilityOfAttributeValueGivenClass(double attVal,
        int classVal) {
    DoubleVector obs = this.attValDistPerClass.get(classVal);
    return obs != null ? (obs.getValue((int) attVal) + 1.0)
            / (obs.sumOfValues() + obs.numValues()) : 0.0;
}
 
開發者ID:Waikato,項目名稱:moa,代碼行數:8,代碼來源:NominalAttributeClassObserver.java


注:本文中的moa.core.DoubleVector.getValue方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。