本文整理匯總了Golang中vu/data.Shader.Uniforms方法的典型用法代碼示例。如果您正苦於以下問題:Golang Shader.Uniforms方法的具體用法?Golang Shader.Uniforms怎麽用?Golang Shader.Uniforms使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類vu/data.Shader
的用法示例。
在下文中一共展示了Shader.Uniforms方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: uvShader
// uvShader handles a single texture.
func uvShader(sh *data.Shader) {
sh.Vsh = []string{
"#version 150",
"in vec4 in_v;", // vertex coordinates
"in vec2 in_t;", // texture coordinates
"uniform mat4 mvpm;", // projection * model_view
"out vec2 t_uv;", // pass uv coordinates through
"void main() {",
" gl_Position = mvpm * in_v;",
" t_uv = in_t;",
"}",
}
sh.Fsh = []string{
"#version 150",
"in vec2 t_uv;",
"uniform sampler2D uv;",
"uniform float alpha;", // transparency
"out vec4 ffc;", // final fragment colour
"void main() {",
" ffc = texture(uv, t_uv) * vec4(1.0, 1.0, 1.0, alpha);",
"}",
}
sh.Uniforms = map[string]int32{
"mvpm": -1,
"alpha": -1,
"uv": -1,
}
}
示例2: flatShader
// flatShader is a basic shader used mostly in test programs.
//
// Flat Shading : The algorithm is used to calculate the colour for the polygon.
// The polygon has only one normal and the only part of the above
// algorithm used is:
// diffuse*(normal . light-direction)
func flatShader(sh *data.Shader) {
sh.Vsh = []string{
"#version 150",
"in vec4 in_v;", // vertex coordinates
"uniform mat4 mvpm;", // projection * modelView
"uniform vec3 kd;", // diffuse colour
"uniform float alpha;", // transparency
"out vec4 v_c;", // vertex colour
"void main() {",
" gl_Position = mvpm * in_v;",
" v_c = vec4(kd, alpha);",
"}",
}
sh.Fsh = []string{
"#version 150",
"in vec4 v_c;", // color from vertex shader
"out vec4 ffc;", // final fragment colour
"void main() {",
" ffc = v_c;",
"}",
}
sh.Uniforms = map[string]int32{
"mvpm": -1,
"kd": -1,
"alpha": -1,
}
}
示例3: phongShader
// phongShader is based on
// http://www.packtpub.com/article/opengl-glsl-4-shaders-basics
//
// Phong Shading : The full algorithm is calculated at each point. This is done
// by having a normal at each vertex and interpolating the normals
// across the polygon.
func phongShader(sh *data.Shader) {
sh.Vsh = []string{
"#version 150",
"in vec4 in_v;", // vertex coordinates
"in vec3 in_n;", // vertex normal
"uniform mat4 mvpm;", // projection * model_view
"uniform mat4 mvm;", // model_view
"uniform mat3 nm;", // normal matrix
"uniform vec4 l;", // untransformed light position
"uniform vec3 ld;", // light source intensity
"uniform vec3 ka;", // material ambient value
"uniform vec3 kd;", // material diffuse value
"uniform vec3 ks;", // material specular value
"uniform float alpha;", // transparency
"out vec4 v_c;", // vertex colour
"void main() {",
" vec3 norm = normalize( nm * in_n);",
" vec4 eyeCoords = mvm * in_v;",
" vec3 s = normalize(vec3(l - eyeCoords));",
" vec3 v = normalize(-eyeCoords.xyz);",
" vec3 r = reflect( -s, norm );",
" ",
" vec3 la = vec3(1.0);", // FUTURE make la a uniform.
" vec3 ambient = la * ka;",
" float sDotN = max( dot(s,norm), 0.0 );",
" vec3 diffuse = ld * kd * sDotN;",
" vec3 spec = vec3(0.0);",
" float shininess = 3.0;", // FUTURE make shininess a uniform.",
" vec3 ls = vec3(1.0);", // FUTURE make ls a uniform.",
" if( sDotN > 0.0 )",
" spec = ls * ks * pow( max( dot(r,v), 0.0 ), shininess );",
" ",
" vec3 colour = ambient + diffuse + spec;", // combine all the values.
" v_c = vec4(colour, alpha);", // pass on the vertex colour
" gl_Position = mvpm * in_v;", // pass on the transformed vertex position",
"}",
}
sh.Fsh = []string{
"#version 150",
"in vec4 v_c;", // input colour
"out vec4 ffc;", // final fragment colour
"void main() {",
" ffc = v_c;",
"}",
}
sh.Uniforms = map[string]int32{
"mvpm": -1,
"mvm": -1,
"nm": -1,
"l": -1,
"ld": -1,
"ka": -1,
"kd": -1,
"ks": -1,
"alpha": -1,
}
}
示例4: waveShader
// waveShader is a fragment only effect shader.
// This is a modified version of http://glsl.heroku.com/e#8397.0
func waveShader(sh *data.Shader) {
sh.Vsh = []string{
"#version 150",
"in vec4 in_v;", // vertex coordinates
"uniform mat4 mvpm;", // projection * model_view
"",
"void main() {",
" gl_Position = mvpm * in_v;",
"}",
}
sh.Fsh = []string{
"#version 150",
"uniform float time;", // current time in seconds
"uniform vec2 resolution;", // viewport size
"uniform float alpha;", // transparency
"out vec4 ffc;", // final fragment colour
"",
"const float Pi = 3.14159;",
"const float fScale = 4.3;",
"const float fEps = 0.5;",
"",
"void main() {",
" vec2 p = (2.0*gl_FragCoord.xy-resolution)/max(resolution.x,resolution.y);",
" for(int i=1; i<100; i++) {",
" vec2 newp =p;",
" newp.x += 1.5/float(i)*sin(float(i)*p.y+time/40.0+0.3*float(i))+400./20.0;",
" newp.y += 0.05/float(i)*sin(float(i)*p.x+time/1.0+0.3*float(i+10))-400./20.0+15.0;",
" p = newp;",
" }",
" vec3 col = vec3(0.5*sin(3.0*p.x)+0.5,0.5*sin(3.0*p.y)+0.5,sin(p.x+p.y));",
" vec3 lum = vec3(0.299,0.587,0.114);",
" vec3 c = vec3(dot(col*0.2,lum));",
" ffc = vec4(c, 1.0);",
" ffc.a = ffc.a*alpha;",
"}",
}
sh.Uniforms = map[string]int32{
"mvpm": -1,
"alpha": -1,
"time": -1,
"resolution": -1,
}
}
示例5: bbShader
// bbShader is a billboard shader. Like a uv shader it renders a single texture
// but forces the textured object to always face the camera. See
// http://www.lighthouse3d.com/opengl/billboarding/billboardingtut.pdf
func bbShader(sh *data.Shader) {
sh.Vsh = []string{
"#version 150",
"in vec4 in_v;", // vertex coordinates
"in vec2 in_t;", // texture coordinates
"uniform mat4 mvpm;", // projection * model_view
"uniform vec3 scale;", // scale
"out vec2 t_uv;", // pass uv coordinates through
"void main() {",
" mat4 bb = mvpm;",
" bb[0][0] = 1.0;",
" bb[1][0] = mvpm[1][0];",
" bb[2][0] = 0.0;",
" bb[0][1] = 0.0;",
" bb[1][1] = 1.0;",
" bb[2][1] = 0.0;",
" bb[0][2] = 0.0;",
" bb[1][2] = mvpm[1][2];",
" bb[2][2] = 1.0;",
" vec4 vpos = in_v;",
" vpos.xyz = vpos.xyz * scale;",
" gl_Position = bb * vpos;",
" t_uv = in_t;",
"}",
}
sh.Fsh = []string{
"#version 150",
"in vec2 t_uv;",
"uniform sampler2D uv;",
"uniform float alpha;", // transparency
"out vec4 ffc;", // final fragment colour
"void main() {",
" ffc = texture(uv, t_uv) * vec4(1.0, 1.0, 1.0, alpha);",
"}",
}
sh.Uniforms = map[string]int32{
"mvpm": -1,
"alpha": -1,
"scale": -1,
"uv": -1,
}
}
示例6: uvmShader
// uvmShader is a white mask uvshader. This is used to get a white + alpha.
func uvmShader(sh *data.Shader) {
uvShader(sh)
sh.Fsh = []string{
"#version 150",
"in vec2 t_uv;",
"uniform sampler2D uv;",
"out vec4 ffc;", // final fragment colour
"",
"void main() {",
" ffc = texture(uv, t_uv);",
" ffc.r = 1.0;",
" ffc.g = 1.0;",
" ffc.b = 1.0;",
"}",
}
sh.Uniforms = map[string]int32{
"mvpm": -1,
"uv": -1,
}
}
示例7: gouraudShader
// gouraudShader is based on
// http://www.packtpub.com/article/opengl-glsl-4-shaders-basics
// http://devmaster.net/posts/2974/the-basics-of-3d-lighting
//
// Gouraud Shading : The algorithm is used to calculate a colour at each vertex.
// The colours are then interpolated across the polygon.
func gouraudShader(sh *data.Shader) {
sh.Vsh = []string{
"#version 150",
"in vec4 in_v;", // vertex coordinates
"in vec3 in_n;", // vertex normal
"uniform mat4 mvpm;", // projection * model_view
"uniform mat4 mvm;", // model_view
"uniform mat3 nm;", // normal matrix
"uniform vec4 l;", // untransformed light position
"uniform vec3 ld;", // light source intensity
"uniform vec3 kd;", // material diffuse value
"uniform float alpha;", // transparency
"out vec4 v_c;", // vertex colour
"void main() {",
" vec3 norm = normalize( nm * in_n);", // Convert normal and position to eye coords
" vec4 eyeCoords = mvm * in_v;",
" vec3 lightDirection = normalize(vec3(l - eyeCoords));",
" ",
" vec3 colour = ld * kd * max( dot( lightDirection, norm ), 0.0 );",
" v_c = vec4(colour, alpha);", // pass on the amount of diffuse light.
" gl_Position = mvpm * in_v;", // pass on the transformed vertex position
"}",
}
sh.Fsh = []string{
"#version 150",
"in vec4 v_c;", // color from vertex shader
"out vec4 ffc;", // final fragment colour
"void main() {",
" ffc = v_c;",
"}",
}
sh.Uniforms = map[string]int32{
"mvpm": -1,
"mvm": -1,
"nm": -1,
"l": -1,
"ld": -1,
"kd": -1,
"alpha": -1,
}
}