本文整理匯總了Golang中github.com/hrautila/cvx/sets.DimensionSet.SumPacked方法的典型用法代碼示例。如果您正苦於以下問題:Golang DimensionSet.SumPacked方法的具體用法?Golang DimensionSet.SumPacked怎麽用?Golang DimensionSet.SumPacked使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/hrautila/cvx/sets.DimensionSet
的用法示例。
在下文中一共展示了DimensionSet.SumPacked方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: pack
/*
Copy x to y using packed storage.
The vector x is an element of S, with the 's' components stored in
unpacked storage. On return, x is copied to y with the 's' components
stored in packed storage and the off-diagonal entries scaled by
sqrt(2).
*/
func pack(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, opts ...la_.Option) (err error) {
/*DEBUGGED*/
err = nil
mnl := la_.GetIntOpt("mnl", 0, opts...)
offsetx := la_.GetIntOpt("offsetx", 0, opts...)
offsety := la_.GetIntOpt("offsety", 0, opts...)
nlq := mnl + dims.At("l")[0] + dims.Sum("q")
blas.Copy(x, y, &la_.IOpt{"n", nlq}, &la_.IOpt{"offsetx", offsetx},
&la_.IOpt{"offsety", offsety})
iu, ip := offsetx+nlq, offsety+nlq
for _, n := range dims.At("s") {
for k := 0; k < n; k++ {
blas.Copy(x, y, &la_.IOpt{"n", n - k}, &la_.IOpt{"offsetx", iu + k*(n+1)},
&la_.IOpt{"offsety", ip})
y.SetIndex(ip, (y.GetIndex(ip) / math.Sqrt(2.0)))
ip += n - k
}
iu += n * n
}
np := dims.SumPacked("s")
blas.ScalFloat(y, math.Sqrt(2.0), &la_.IOpt{"n", np}, &la_.IOpt{"offset", offsety + nlq})
return
}
示例2: ConeLpCustomKKT
// Solves a pair of primal and dual cone programs using custom KKT solver.
//
func ConeLpCustomKKT(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet,
kktsolver KKTConeSolver, solopts *SolverOptions, primalstart,
dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
if c == nil || c.Cols() > 1 {
err = errors.New("'c' must be matrix with 1 column")
return
}
if h == nil {
h = matrix.FloatZeros(0, 1)
}
if h.Cols() > 1 {
err = errors.New("'h' must be matrix with 1 column")
return
}
if dims == nil {
dims = sets.NewDimensionSet("l", "q", "s")
dims.Set("l", []int{h.Rows()})
}
cdim := dims.Sum("l", "q") + dims.SumSquared("s")
cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
//cdim_diag := dims.Sum("l", "q", "s")
if G == nil {
G = matrix.FloatZeros(0, c.Rows())
}
if !G.SizeMatch(cdim, c.Rows()) {
estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows())
err = errors.New(estr)
return
}
// Check A and set defaults if it is nil
if A == nil {
// zeros rows reduces Gemv to vector products
A = matrix.FloatZeros(0, c.Rows())
}
if A.Cols() != c.Rows() {
estr := fmt.Sprintf("'A' must have %d columns", c.Rows())
err = errors.New(estr)
return
}
// Check b and set defaults if it is nil
if b == nil {
b = matrix.FloatZeros(0, 1)
}
if b.Cols() != 1 {
estr := fmt.Sprintf("'b' must be a matrix with 1 column")
err = errors.New(estr)
return
}
if b.Rows() != A.Rows() {
estr := fmt.Sprintf("'b' must have length %d", A.Rows())
err = errors.New(estr)
return
}
if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() {
err = errors.New("Rank(A) < p or Rank([G; A]) < n")
return
}
mA := &matrixVarA{A}
mG := &matrixVarG{G, dims}
mc := &matrixVar{c}
mb := &matrixVar{b}
return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart)
}
示例3: ConeLpCustomMatrix
// Solves a pair of primal and dual cone programs using custom KKT solver and constraint
// interfaces MatrixG and MatrixA
//
func ConeLpCustomMatrix(c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix,
A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver,
solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
err = nil
if c == nil || c.Cols() > 1 {
err = errors.New("'c' must be matrix with 1 column")
return
}
if h == nil || h.Cols() > 1 {
err = errors.New("'h' must be matrix with 1 column")
return
}
if err = checkConeLpDimensions(dims); err != nil {
return
}
cdim := dims.Sum("l", "q") + dims.SumSquared("s")
cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
//cdim_diag := dims.Sum("l", "q", "s")
if h.Rows() != cdim {
err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
return
}
// Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G.
indq := make([]int, 0)
indq = append(indq, dims.At("l")[0])
for _, k := range dims.At("q") {
indq = append(indq, indq[len(indq)-1]+k)
}
// Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G.
inds := make([]int, 0)
inds = append(inds, indq[len(indq)-1])
for _, k := range dims.At("s") {
inds = append(inds, inds[len(inds)-1]+k*k)
}
// Check b and set defaults if it is nil
if b == nil {
b = matrix.FloatZeros(0, 1)
}
if b.Cols() != 1 {
estr := fmt.Sprintf("'b' must be a matrix with 1 column")
err = errors.New(estr)
return
}
if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() {
err = errors.New("Rank(A) < p or Rank([G; A]) < n")
return
}
if kktsolver == nil {
err = errors.New("nil kktsolver not allowed.")
return
}
var mA MatrixVarA
var mG MatrixVarG
if G == nil {
mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims}
} else {
mG = &matrixIfG{G}
}
if A == nil {
mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())}
} else {
mA = &matrixIfA{A}
}
var mc = &matrixVar{c}
var mb = &matrixVar{b}
return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart)
}
示例4: ConeLp
// Solves a pair of primal and dual cone programs
//
// minimize c'*x
// subject to G*x + s = h
// A*x = b
// s >= 0
//
// maximize -h'*z - b'*y
// subject to G'*z + A'*y + c = 0
// z >= 0.
//
// The inequalities are with respect to a cone C defined as the Cartesian
// product of N + M + 1 cones:
//
// C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}.
//
// The first cone C_0 is the nonnegative orthant of dimension ml.
// The next N cones are second order cones of dimension r[0], ..., r[N-1].
// The second order cone of dimension m is defined as
//
// { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }.
//
// The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0.
//
// The structure of C is specified by DimensionSet dims which holds following sets
//
// dims.At("l") l, the dimension of the nonnegative orthant (array of length 1)
// dims.At("q") r[0], ... r[N-1], list with the dimesions of the second-order cones
// dims.At("s") t[0], ... t[M-1], array with the dimensions of the positive
// semidefinite cones
//
// The default value for dims is l: []int{G.Rows()}, q: []int{}, s: []int{}.
//
// Arguments primalstart, dualstart are optional starting points for primal and
// dual problems. If non-nil then primalstart is a FloatMatrixSet having two entries.
//
// primalstart.At("x")[0] starting point for x
// primalstart.At("s")[0] starting point for s
// dualstart.At("y")[0] starting point for y
// dualstart.At("z")[0] starting point for z
//
// On exit Solution contains the result and information about the accurancy of the
// solution. if SolutionStatus is Optimal then Solution.Result contains solutions
// for the problems.
//
// Result.At("x")[0] solution for x
// Result.At("y")[0] solution for y
// Result.At("s")[0] solution for s
// Result.At("z")[0] solution for z
//
func ConeLp(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions,
primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
if c == nil || c.Cols() > 1 {
err = errors.New("'c' must be matrix with 1 column")
return
}
if c.Rows() < 1 {
err = errors.New("No variables, 'c' must have at least one row")
return
}
if h == nil || h.Cols() > 1 {
err = errors.New("'h' must be matrix with 1 column")
return
}
if dims == nil {
dims = sets.NewDimensionSet("l", "q", "s")
dims.Set("l", []int{h.Rows()})
}
cdim := dims.Sum("l", "q") + dims.SumSquared("s")
cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
if h.Rows() != cdim {
err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
return
}
if G == nil {
G = matrix.FloatZeros(0, c.Rows())
}
if !G.SizeMatch(cdim, c.Rows()) {
estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows())
err = errors.New(estr)
return
}
// Check A and set defaults if it is nil
if A == nil {
// zeros rows reduces Gemv to vector products
A = matrix.FloatZeros(0, c.Rows())
}
if A.Cols() != c.Rows() {
estr := fmt.Sprintf("'A' must have %d columns", c.Rows())
err = errors.New(estr)
return
}
//.........這裏部分代碼省略.........