本文整理匯總了Golang中github.com/hrautila/cvx/sets.DimensionSet類的典型用法代碼示例。如果您正苦於以下問題:Golang DimensionSet類的具體用法?Golang DimensionSet怎麽用?Golang DimensionSet使用的例子?那麽, 這裏精選的類代碼示例或許可以為您提供幫助。
在下文中一共展示了DimensionSet類的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: sgemv
/*
Matrix-vector multiplication.
A is a matrix or spmatrix of size (m, n) where
N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] )
representing a mapping from R^n to S.
If trans is 'N':
y := alpha*A*x + beta * y (trans = 'N').
x is a vector of length n. y is a vector of length N.
If trans is 'T':
y := alpha*A'*x + beta * y (trans = 'T').
x is a vector of length N. y is a vector of length n.
The 's' components in S are stored in unpacked 'L' storage.
*/
func sgemv(A, x, y *matrix.FloatMatrix, alpha, beta float64, dims *sets.DimensionSet, opts ...la_.Option) error {
m := dims.Sum("l", "q") + dims.SumSquared("s")
n := la_.GetIntOpt("n", -1, opts...)
if n == -1 {
n = A.Cols()
}
trans := la_.GetIntOpt("trans", int(la_.PNoTrans), opts...)
offsetX := la_.GetIntOpt("offsetx", 0, opts...)
offsetY := la_.GetIntOpt("offsety", 0, opts...)
offsetA := la_.GetIntOpt("offseta", 0, opts...)
if trans == int(la_.PTrans) && alpha != 0.0 {
trisc(x, dims, offsetX)
//fmt.Printf("trisc x=\n%v\n", x.ConvertToString())
}
//fmt.Printf("alpha=%.4f beta=%.4f m=%d n=%d\n", alpha, beta, m, n)
//fmt.Printf("A=\n%v\nx=\n%v\ny=\n%v\n", A, x.ConvertToString(), y.ConvertToString())
err := blas.GemvFloat(A, x, y, alpha, beta, &la_.IOpt{"trans", trans},
&la_.IOpt{"n", n}, &la_.IOpt{"m", m}, &la_.IOpt{"offseta", offsetA},
&la_.IOpt{"offsetx", offsetX}, &la_.IOpt{"offsety", offsetY})
//fmt.Printf("gemv y=\n%v\n", y.ConvertToString())
if trans == int(la_.PTrans) && alpha != 0.0 {
triusc(x, dims, offsetX)
}
return err
}
示例2: triusc
/*
Scales the strictly lower triangular part of the 's' components of x
by 0.5.
*/
func triusc(x *matrix.FloatMatrix, dims *sets.DimensionSet, offset int) error {
//m := dims.Sum("l", "q") + dims.SumSquared("s")
ind := offset + dims.Sum("l", "q")
for _, mk := range dims.At("s") {
for j := 1; j < mk; j++ {
blas.ScalFloat(x, 0.5, &la_.IOpt{"n", mk - j}, &la_.IOpt{"offset", ind + mk*(j-1) + j})
}
ind += mk * mk
}
return nil
}
示例3: pack
/*
Copy x to y using packed storage.
The vector x is an element of S, with the 's' components stored in
unpacked storage. On return, x is copied to y with the 's' components
stored in packed storage and the off-diagonal entries scaled by
sqrt(2).
*/
func pack(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, opts ...la_.Option) (err error) {
/*DEBUGGED*/
err = nil
mnl := la_.GetIntOpt("mnl", 0, opts...)
offsetx := la_.GetIntOpt("offsetx", 0, opts...)
offsety := la_.GetIntOpt("offsety", 0, opts...)
nlq := mnl + dims.At("l")[0] + dims.Sum("q")
blas.Copy(x, y, &la_.IOpt{"n", nlq}, &la_.IOpt{"offsetx", offsetx},
&la_.IOpt{"offsety", offsety})
iu, ip := offsetx+nlq, offsety+nlq
for _, n := range dims.At("s") {
for k := 0; k < n; k++ {
blas.Copy(x, y, &la_.IOpt{"n", n - k}, &la_.IOpt{"offsetx", iu + k*(n+1)},
&la_.IOpt{"offsety", ip})
y.SetIndex(ip, (y.GetIndex(ip) / math.Sqrt(2.0)))
ip += n - k
}
iu += n * n
}
np := dims.SumPacked("s")
blas.ScalFloat(y, math.Sqrt(2.0), &la_.IOpt{"n", np}, &la_.IOpt{"offset", offsety + nlq})
return
}
示例4: trisc
/*
Sets upper triangular part of the 's' components of x equal to zero
and scales the strictly lower triangular part by 2.0.
*/
func trisc(x *matrix.FloatMatrix, dims *sets.DimensionSet, offset int) error {
//m := dims.Sum("l", "q") + dims.SumSquared("s")
ind := offset + dims.Sum("l", "q")
for _, mk := range dims.At("s") {
for j := 1; j < mk; j++ {
blas.ScalFloat(x, 0.0, la_.IntOpt("n", mk-j), la_.IntOpt("inc", mk),
la_.IntOpt("offset", ind+j*(mk+1)-1))
blas.ScalFloat(x, 2.0, la_.IntOpt("n", mk-j), la_.IntOpt("offset", ind+mk*(j-1)+j))
}
ind += mk * mk
}
return nil
}
示例5: checkConeLpDimensions
func checkConeLpDimensions(dims *sets.DimensionSet) error {
if len(dims.At("l")) == 0 {
dims.Set("l", []int{0})
} else if dims.At("l")[0] < 0 {
return errors.New("dimension 'l' must be nonnegative integer")
}
for _, m := range dims.At("q") {
if m < 1 {
return errors.New("dimension 'q' must be list of positive integers")
}
}
for _, m := range dims.At("s") {
if m < 1 {
return errors.New("dimension 's' must be list of positive integers")
}
}
return nil
}
示例6: pack2
// In-place version of pack(), which also accepts matrix arguments x.
// The columns of x are elements of S, with the 's' components stored
// in unpacked storage. On return, the 's' components are stored in
// packed storage and the off-diagonal entries are scaled by sqrt(2).
//
func pack2(x *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (err error) {
if len(dims.At("s")) == 0 {
return nil
}
const sqrt2 = 1.41421356237309504880
iu := mnl + dims.Sum("l", "q")
ip := iu
row := matrix.FloatZeros(1, x.Cols())
//fmt.Printf("x.size = %d %d\n", x.Rows(), x.Cols())
for _, n := range dims.At("s") {
for k := 0; k < n; k++ {
cnt := n - k
row = x.GetRow(iu+(n+1)*k, row)
//fmt.Printf("%02d: %v\n", iu+(n+1)*k, x.FloatArray())
x.SetRow(ip, row)
for i := 1; i < n-k; i++ {
row = x.GetRow(iu+(n+1)*k+i, row)
//fmt.Printf("%02d: %v\n", iu+(n+1)*k+i, x.FloatArray())
x.SetRow(ip+i, row.Scale(sqrt2))
}
ip += cnt
}
iu += n * n
}
return nil
}
示例7: sinv
func sinv(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (err error) {
/*DEBUGGED*/
err = nil
// For the nonlinear and 'l' blocks:
//
// yk o\ xk = yk .\ xk.
ind := mnl + dims.At("l")[0]
blas.Tbsv(y, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"ldA", 1})
// For the 'q' blocks:
//
// [ l0 -l1' ]
// yk o\ xk = 1/a^2 * [ ] * xk
// [ -l1 (a*I + l1*l1')/l0 ]
//
// where yk = (l0, l1) and a = l0^2 - l1'*l1.
for _, m := range dims.At("q") {
aa := blas.Nrm2Float(y, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1})
ee := y.GetIndex(ind)
aa = (ee + aa) * (ee - aa)
cc := x.GetIndex(ind)
dd := blas.DotFloat(x, y, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offsetx", ind + 1},
&la_.IOpt{"offsety", ind + 1})
x.SetIndex(ind, cc*ee-dd)
blas.ScalFloat(x, aa/ee, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1})
blas.AxpyFloat(y, x, dd/ee-cc, &la_.IOpt{"n", m - 1},
&la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1})
blas.ScalFloat(x, 1.0/aa, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind})
ind += m
}
// For the 's' blocks:
//
// yk o\ xk = xk ./ gamma
//
// where gammaij = .5 * (yk_i + yk_j).
ind2 := ind
for _, m := range dims.At("s") {
for j := 0; j < m; j++ {
u := matrix.FloatVector(y.FloatArray()[ind2+j : ind2+m])
u.Add(y.GetIndex(ind2 + j))
u.Scale(0.5)
blas.Tbsv(u, x, &la_.IOpt{"n", m - j}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1},
&la_.IOpt{"offsetx", ind + j*(m+1)})
}
ind += m * m
ind2 += m
}
return
}
示例8: maxStep
// Returns min {t | x + t*e >= 0}, where e is defined as follows
//
// - For the nonlinear and 'l' blocks: e is the vector of ones.
// - For the 'q' blocks: e is the first unit vector.
// - For the 's' blocks: e is the identity matrix.
//
// When called with the argument sigma, also returns the eigenvalues
// (in sigma) and the eigenvectors (in x) of the 's' components of x.
func maxStep(x *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int, sigma *matrix.FloatMatrix) (rval float64, err error) {
/*DEBUGGED*/
rval = 0.0
err = nil
t := make([]float64, 0, 10)
ind := mnl + dims.Sum("l")
if ind > 0 {
t = append(t, -minvec(x.FloatArray()[:ind]))
}
for _, m := range dims.At("q") {
if m > 0 {
v := blas.Nrm2Float(x, &la_.IOpt{"offset", ind + 1}, &la_.IOpt{"n", m - 1})
v -= x.GetIndex(ind)
t = append(t, v)
}
ind += m
}
//var Q *matrix.FloatMatrix
//var w *matrix.FloatMatrix
ind2 := 0
//if sigma == nil && len(dims.At("s")) > 0 {
// mx := dims.Max("s")
// Q = matrix.FloatZeros(mx, mx)
// w = matrix.FloatZeros(mx, 1)
//}
for _, m := range dims.At("s") {
if sigma == nil {
Q := matrix.FloatZeros(m, m)
w := matrix.FloatZeros(m, 1)
blas.Copy(x, Q, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m * m})
err = lapack.SyevrFloat(Q, w, nil, 0.0, nil, []int{1, 1}, la_.OptRangeInt,
&la_.IOpt{"n", m}, &la_.IOpt{"lda", m})
if m > 0 && err == nil {
t = append(t, -w.GetIndex(0))
}
} else {
err = lapack.SyevdFloat(x, sigma, la_.OptJobZValue, &la_.IOpt{"n", m},
&la_.IOpt{"lda", m}, &la_.IOpt{"offseta", ind}, &la_.IOpt{"offsetw", ind2})
if m > 0 {
t = append(t, -sigma.GetIndex(ind2))
}
}
ind += m * m
ind2 += m
}
if len(t) > 0 {
rval = maxvec(t)
}
return
}
示例9: sdot
// Inner product of two vectors in S.
func sdot(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) float64 {
/*DEBUGGED*/
ind := mnl + dims.At("l")[0] + dims.Sum("q")
a := blas.DotFloat(x, y, &la_.IOpt{"n", ind})
for _, m := range dims.At("s") {
a += blas.DotFloat(x, y, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind},
&la_.IOpt{"incx", m + 1}, &la_.IOpt{"incy", m + 1}, &la_.IOpt{"n", m})
for j := 1; j < m; j++ {
a += 2.0 * blas.DotFloat(x, y, &la_.IOpt{"offsetx", ind + j}, &la_.IOpt{"offsety", ind + j},
&la_.IOpt{"incx", m + 1}, &la_.IOpt{"incy", m + 1}, &la_.IOpt{"n", m - j})
}
ind += m * m
}
return a
}
示例10: ssqr
// The product x := y o y. The 's' components of y are diagonal and
// only the diagonals of x and y are stored.
func ssqr(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (err error) {
/*DEBUGGED*/
blas.Copy(y, x)
ind := mnl + dims.At("l")[0]
err = blas.Tbmv(y, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1})
if err != nil {
return
}
for _, m := range dims.At("q") {
v := blas.Nrm2Float(y, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind})
x.SetIndex(ind, v*v)
blas.ScalFloat(x, 2.0*y.GetIndex(ind), &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1})
ind += m
}
err = blas.Tbmv(y, x, &la_.IOpt{"n", dims.Sum("s")}, &la_.IOpt{"k", 0},
&la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", ind}, &la_.IOpt{"offsetx", ind})
return
}
示例11: unpack
/*
The vector x is an element of S, with the 's' components stored
in unpacked storage and off-diagonal entries scaled by sqrt(2).
On return, x is copied to y with the 's' components stored in
unpacked storage.
*/
func unpack(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, opts ...la_.Option) (err error) {
/*DEBUGGED*/
err = nil
mnl := la_.GetIntOpt("mnl", 0, opts...)
offsetx := la_.GetIntOpt("offsetx", 0, opts...)
offsety := la_.GetIntOpt("offsety", 0, opts...)
nlq := mnl + dims.At("l")[0] + dims.Sum("q")
err = blas.Copy(x, y, &la_.IOpt{"n", nlq}, &la_.IOpt{"offsetx", offsetx},
&la_.IOpt{"offsety", offsety})
if err != nil {
return
}
ip, iu := offsetx+nlq, offsety+nlq
for _, n := range dims.At("s") {
for k := 0; k < n; k++ {
err = blas.Copy(x, y, &la_.IOpt{"n", n - k}, &la_.IOpt{"offsetx", ip},
&la_.IOpt{"offsety", iu + k*(n+1)})
if err != nil {
return
}
ip += n - k
blas.ScalFloat(y, 1.0/math.Sqrt(2.0),
&la_.IOpt{"n", n - k - 1}, &la_.IOpt{"offset", iu + k*(n+1) + 1})
}
iu += n * n
}
/*
nu := dims.SumSquared("s")
fmt.Printf("-- UnPack: nu=%d, offset=%d\n", nu, offsety+nlq)
err = blas.ScalFloat(y,
&la_.IOpt{"n", nu}, &la_.IOpt{"offset", offsety+nlq})
*/
return
}
示例12: CplCustomMatrix
// Solves a convex optimization problem with a linear objective
//
// minimize c'*x
// subject to f(x) <= 0
// G*x <= h
// A*x = b.
//
// using custom KTT equation solver and custom constraints G and A.
//
func CplCustomMatrix(F ConvexProg, c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix,
A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver,
solopts *SolverOptions) (sol *Solution, err error) {
var mnl int
var x0 *matrix.FloatMatrix
mnl, x0, err = F.F0()
if err != nil {
return
}
if x0.Cols() != 1 {
err = errors.New("'x0' must be matrix with one column")
return
}
if c == nil {
err = errors.New("'c' must be non nil matrix")
return
}
if !c.SizeMatch(x0.Size()) {
err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows()))
return
}
if h == nil {
h = matrix.FloatZeros(0, 1)
}
if h.Cols() > 1 {
err = errors.New("'h' must be matrix with 1 column")
return
}
if dims == nil {
dims = sets.NewDimensionSet("l", "q", "s")
dims.Set("l", []int{h.Rows()})
}
cdim := dims.Sum("l", "q") + dims.SumSquared("s")
if h.Rows() != cdim {
err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
return
}
// Check b and set defaults if it is nil
if b == nil {
b = matrix.FloatZeros(0, 1)
}
if b.Cols() != 1 {
estr := fmt.Sprintf("'b' must be a matrix with 1 column")
err = errors.New(estr)
return
}
mc := matrixVar{c}
mb := matrixVar{b}
var mG MatrixVarG
var mA MatrixVarA
if G == nil {
mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims}
} else {
mG = &matrixIfG{G}
}
if A == nil {
mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())}
} else {
mA = &matrixIfA{A}
}
return cpl_problem(F, &mc, mG, h, mA, &mb, dims, kktsolver, solopts, x0, mnl)
}
示例13: CplCustomKKT
// Solves a convex optimization problem with a linear objective
//
// minimize c'*x
// subject to f(x) <= 0
// G*x <= h
// A*x = b.
//
// using custom KTT equation solver.
//
func CplCustomKKT(F ConvexProg, c *matrix.FloatMatrix, G, h, A, b *matrix.FloatMatrix,
dims *sets.DimensionSet, kktsolver KKTCpSolver,
solopts *SolverOptions) (sol *Solution, err error) {
var mnl int
var x0 *matrix.FloatMatrix
mnl, x0, err = F.F0()
if err != nil {
return
}
if x0.Cols() != 1 {
err = errors.New("'x0' must be matrix with one column")
return
}
if c == nil {
err = errors.New("'c' must be non nil matrix")
return
}
if !c.SizeMatch(x0.Size()) {
err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows()))
return
}
if h == nil {
h = matrix.FloatZeros(0, 1)
}
if h.Cols() > 1 {
err = errors.New("'h' must be matrix with 1 column")
return
}
if dims == nil {
dims = sets.NewDimensionSet("l", "q", "s")
dims.Set("l", []int{h.Rows()})
}
cdim := dims.Sum("l", "q") + dims.SumSquared("s")
if h.Rows() != cdim {
err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
return
}
if G == nil {
G = matrix.FloatZeros(0, c.Rows())
}
if !G.SizeMatch(cdim, c.Rows()) {
estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows())
err = errors.New(estr)
return
}
// Check A and set defaults if it is nil
if A == nil {
// zeros rows reduces Gemv to vector products
A = matrix.FloatZeros(0, c.Rows())
}
if A.Cols() != c.Rows() {
estr := fmt.Sprintf("'A' must have %d columns", c.Rows())
err = errors.New(estr)
return
}
// Check b and set defaults if it is nil
if b == nil {
b = matrix.FloatZeros(0, 1)
}
if b.Cols() != 1 {
estr := fmt.Sprintf("'b' must be a matrix with 1 column")
err = errors.New(estr)
return
}
if b.Rows() != A.Rows() {
estr := fmt.Sprintf("'b' must have length %d", A.Rows())
err = errors.New(estr)
return
}
var mc = matrixVar{c}
var mb = matrixVar{b}
var mA = matrixVarA{A}
var mG = matrixVarG{G, dims}
return cpl_problem(F, &mc, &mG, h, &mA, &mb, dims, kktsolver, solopts, x0, mnl)
}
示例14: ConeLpCustomMatrix
// Solves a pair of primal and dual cone programs using custom KKT solver and constraint
// interfaces MatrixG and MatrixA
//
func ConeLpCustomMatrix(c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix,
A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver,
solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
err = nil
if c == nil || c.Cols() > 1 {
err = errors.New("'c' must be matrix with 1 column")
return
}
if h == nil || h.Cols() > 1 {
err = errors.New("'h' must be matrix with 1 column")
return
}
if err = checkConeLpDimensions(dims); err != nil {
return
}
cdim := dims.Sum("l", "q") + dims.SumSquared("s")
cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
//cdim_diag := dims.Sum("l", "q", "s")
if h.Rows() != cdim {
err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
return
}
// Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G.
indq := make([]int, 0)
indq = append(indq, dims.At("l")[0])
for _, k := range dims.At("q") {
indq = append(indq, indq[len(indq)-1]+k)
}
// Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G.
inds := make([]int, 0)
inds = append(inds, indq[len(indq)-1])
for _, k := range dims.At("s") {
inds = append(inds, inds[len(inds)-1]+k*k)
}
// Check b and set defaults if it is nil
if b == nil {
b = matrix.FloatZeros(0, 1)
}
if b.Cols() != 1 {
estr := fmt.Sprintf("'b' must be a matrix with 1 column")
err = errors.New(estr)
return
}
if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() {
err = errors.New("Rank(A) < p or Rank([G; A]) < n")
return
}
if kktsolver == nil {
err = errors.New("nil kktsolver not allowed.")
return
}
var mA MatrixVarA
var mG MatrixVarG
if G == nil {
mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims}
} else {
mG = &matrixIfG{G}
}
if A == nil {
mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())}
} else {
mA = &matrixIfA{A}
}
var mc = &matrixVar{c}
var mb = &matrixVar{b}
return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart)
}
示例15: computeScaling
/*
Returns the Nesterov-Todd scaling W at points s and z, and stores the
scaled variable in lmbda.
W * z = W^{-T} * s = lmbda.
W is a MatrixSet with entries:
- W['dnl']: positive vector
- W['dnli']: componentwise inverse of W['dnl']
- W['d']: positive vector
- W['di']: componentwise inverse of W['d']
- W['v']: lists of 2nd order cone vectors with unit hyperbolic norms
- W['beta']: list of positive numbers
- W['r']: list of square matrices
- W['rti']: list of square matrices. rti[k] is the inverse transpose
of r[k].
*/
func computeScaling(s, z, lmbda *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (W *sets.FloatMatrixSet, err error) {
/*DEBUGGED*/
err = nil
W = sets.NewFloatSet("dnl", "dnli", "d", "di", "v", "beta", "r", "rti")
// For the nonlinear block:
//
// W['dnl'] = sqrt( s[:mnl] ./ z[:mnl] )
// W['dnli'] = sqrt( z[:mnl] ./ s[:mnl] )
// lambda[:mnl] = sqrt( s[:mnl] .* z[:mnl] )
var stmp, ztmp, lmd *matrix.FloatMatrix
if mnl > 0 {
stmp = matrix.FloatVector(s.FloatArray()[:mnl])
ztmp = matrix.FloatVector(z.FloatArray()[:mnl])
//dnl := stmp.Div(ztmp)
//dnl.Apply(dnl, math.Sqrt)
dnl := matrix.Sqrt(matrix.Div(stmp, ztmp))
//dnli := dnl.Copy()
//dnli.Apply(dnli, func(a float64)float64 { return 1.0/a })
dnli := matrix.Inv(dnl)
W.Set("dnl", dnl)
W.Set("dnli", dnli)
//lmd = stmp.Mul(ztmp)
//lmd.Apply(lmd, math.Sqrt)
lmd = matrix.Sqrt(matrix.Mul(stmp, ztmp))
lmbda.SetIndexesFromArray(lmd.FloatArray(), matrix.MakeIndexSet(0, mnl, 1)...)
} else {
// set for empty matrices
//W.Set("dnl", matrix.FloatZeros(0, 1))
//W.Set("dnli", matrix.FloatZeros(0, 1))
mnl = 0
}
// For the 'l' block:
//
// W['d'] = sqrt( sk ./ zk )
// W['di'] = sqrt( zk ./ sk )
// lambdak = sqrt( sk .* zk )
//
// where sk and zk are the first dims['l'] entries of s and z.
// lambda_k is stored in the first dims['l'] positions of lmbda.
m := dims.At("l")[0]
//td := s.FloatArray()
stmp = matrix.FloatVector(s.FloatArray()[mnl : mnl+m])
//zd := z.FloatArray()
ztmp = matrix.FloatVector(z.FloatArray()[mnl : mnl+m])
//fmt.Printf(".Sqrt()=\n%v\n", matrix.Div(stmp, ztmp).Sqrt().ToString("%.17f"))
//d := stmp.Div(ztmp)
//d.Apply(d, math.Sqrt)
d := matrix.Div(stmp, ztmp).Sqrt()
//di := d.Copy()
//di.Apply(di, func(a float64)float64 { return 1.0/a })
di := matrix.Inv(d)
//fmt.Printf("d:\n%v\n", d)
//fmt.Printf("di:\n%v\n", di)
W.Set("d", d)
W.Set("di", di)
//lmd = stmp.Mul(ztmp)
//lmd.Apply(lmd, math.Sqrt)
lmd = matrix.Mul(stmp, ztmp).Sqrt()
// lmd has indexes mnl:mnl+m and length of m
lmbda.SetIndexesFromArray(lmd.FloatArray(), matrix.MakeIndexSet(mnl, mnl+m, 1)...)
//fmt.Printf("after l:\n%v\n", lmbda)
/*
For the 'q' blocks, compute lists 'v', 'beta'.
The vector v[k] has unit hyperbolic norm:
(sqrt( v[k]' * J * v[k] ) = 1 with J = [1, 0; 0, -I]).
beta[k] is a positive scalar.
The hyperbolic Householder matrix H = 2*v[k]*v[k]' - J
defined by v[k] satisfies
(beta[k] * H) * zk = (beta[k] * H) \ sk = lambda_k
where sk = s[indq[k]:indq[k+1]], zk = z[indq[k]:indq[k+1]].
//.........這裏部分代碼省略.........