本文整理匯總了Golang中github.com/hrautila/cvx/sets.DimensionSet.Sum方法的典型用法代碼示例。如果您正苦於以下問題:Golang DimensionSet.Sum方法的具體用法?Golang DimensionSet.Sum怎麽用?Golang DimensionSet.Sum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/hrautila/cvx/sets.DimensionSet
的用法示例。
在下文中一共展示了DimensionSet.Sum方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: sgemv
/*
Matrix-vector multiplication.
A is a matrix or spmatrix of size (m, n) where
N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] )
representing a mapping from R^n to S.
If trans is 'N':
y := alpha*A*x + beta * y (trans = 'N').
x is a vector of length n. y is a vector of length N.
If trans is 'T':
y := alpha*A'*x + beta * y (trans = 'T').
x is a vector of length N. y is a vector of length n.
The 's' components in S are stored in unpacked 'L' storage.
*/
func sgemv(A, x, y *matrix.FloatMatrix, alpha, beta float64, dims *sets.DimensionSet, opts ...la_.Option) error {
m := dims.Sum("l", "q") + dims.SumSquared("s")
n := la_.GetIntOpt("n", -1, opts...)
if n == -1 {
n = A.Cols()
}
trans := la_.GetIntOpt("trans", int(la_.PNoTrans), opts...)
offsetX := la_.GetIntOpt("offsetx", 0, opts...)
offsetY := la_.GetIntOpt("offsety", 0, opts...)
offsetA := la_.GetIntOpt("offseta", 0, opts...)
if trans == int(la_.PTrans) && alpha != 0.0 {
trisc(x, dims, offsetX)
//fmt.Printf("trisc x=\n%v\n", x.ConvertToString())
}
//fmt.Printf("alpha=%.4f beta=%.4f m=%d n=%d\n", alpha, beta, m, n)
//fmt.Printf("A=\n%v\nx=\n%v\ny=\n%v\n", A, x.ConvertToString(), y.ConvertToString())
err := blas.GemvFloat(A, x, y, alpha, beta, &la_.IOpt{"trans", trans},
&la_.IOpt{"n", n}, &la_.IOpt{"m", m}, &la_.IOpt{"offseta", offsetA},
&la_.IOpt{"offsetx", offsetX}, &la_.IOpt{"offsety", offsetY})
//fmt.Printf("gemv y=\n%v\n", y.ConvertToString())
if trans == int(la_.PTrans) && alpha != 0.0 {
triusc(x, dims, offsetX)
}
return err
}
示例2: pack2
// In-place version of pack(), which also accepts matrix arguments x.
// The columns of x are elements of S, with the 's' components stored
// in unpacked storage. On return, the 's' components are stored in
// packed storage and the off-diagonal entries are scaled by sqrt(2).
//
func pack2(x *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (err error) {
if len(dims.At("s")) == 0 {
return nil
}
const sqrt2 = 1.41421356237309504880
iu := mnl + dims.Sum("l", "q")
ip := iu
row := matrix.FloatZeros(1, x.Cols())
//fmt.Printf("x.size = %d %d\n", x.Rows(), x.Cols())
for _, n := range dims.At("s") {
for k := 0; k < n; k++ {
cnt := n - k
row = x.GetRow(iu+(n+1)*k, row)
//fmt.Printf("%02d: %v\n", iu+(n+1)*k, x.FloatArray())
x.SetRow(ip, row)
for i := 1; i < n-k; i++ {
row = x.GetRow(iu+(n+1)*k+i, row)
//fmt.Printf("%02d: %v\n", iu+(n+1)*k+i, x.FloatArray())
x.SetRow(ip+i, row.Scale(sqrt2))
}
ip += cnt
}
iu += n * n
}
return nil
}
示例3: pack
/*
Copy x to y using packed storage.
The vector x is an element of S, with the 's' components stored in
unpacked storage. On return, x is copied to y with the 's' components
stored in packed storage and the off-diagonal entries scaled by
sqrt(2).
*/
func pack(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, opts ...la_.Option) (err error) {
/*DEBUGGED*/
err = nil
mnl := la_.GetIntOpt("mnl", 0, opts...)
offsetx := la_.GetIntOpt("offsetx", 0, opts...)
offsety := la_.GetIntOpt("offsety", 0, opts...)
nlq := mnl + dims.At("l")[0] + dims.Sum("q")
blas.Copy(x, y, &la_.IOpt{"n", nlq}, &la_.IOpt{"offsetx", offsetx},
&la_.IOpt{"offsety", offsety})
iu, ip := offsetx+nlq, offsety+nlq
for _, n := range dims.At("s") {
for k := 0; k < n; k++ {
blas.Copy(x, y, &la_.IOpt{"n", n - k}, &la_.IOpt{"offsetx", iu + k*(n+1)},
&la_.IOpt{"offsety", ip})
y.SetIndex(ip, (y.GetIndex(ip) / math.Sqrt(2.0)))
ip += n - k
}
iu += n * n
}
np := dims.SumPacked("s")
blas.ScalFloat(y, math.Sqrt(2.0), &la_.IOpt{"n", np}, &la_.IOpt{"offset", offsety + nlq})
return
}
示例4: maxStep
// Returns min {t | x + t*e >= 0}, where e is defined as follows
//
// - For the nonlinear and 'l' blocks: e is the vector of ones.
// - For the 'q' blocks: e is the first unit vector.
// - For the 's' blocks: e is the identity matrix.
//
// When called with the argument sigma, also returns the eigenvalues
// (in sigma) and the eigenvectors (in x) of the 's' components of x.
func maxStep(x *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int, sigma *matrix.FloatMatrix) (rval float64, err error) {
/*DEBUGGED*/
rval = 0.0
err = nil
t := make([]float64, 0, 10)
ind := mnl + dims.Sum("l")
if ind > 0 {
t = append(t, -minvec(x.FloatArray()[:ind]))
}
for _, m := range dims.At("q") {
if m > 0 {
v := blas.Nrm2Float(x, &la_.IOpt{"offset", ind + 1}, &la_.IOpt{"n", m - 1})
v -= x.GetIndex(ind)
t = append(t, v)
}
ind += m
}
//var Q *matrix.FloatMatrix
//var w *matrix.FloatMatrix
ind2 := 0
//if sigma == nil && len(dims.At("s")) > 0 {
// mx := dims.Max("s")
// Q = matrix.FloatZeros(mx, mx)
// w = matrix.FloatZeros(mx, 1)
//}
for _, m := range dims.At("s") {
if sigma == nil {
Q := matrix.FloatZeros(m, m)
w := matrix.FloatZeros(m, 1)
blas.Copy(x, Q, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"n", m * m})
err = lapack.SyevrFloat(Q, w, nil, 0.0, nil, []int{1, 1}, la_.OptRangeInt,
&la_.IOpt{"n", m}, &la_.IOpt{"lda", m})
if m > 0 && err == nil {
t = append(t, -w.GetIndex(0))
}
} else {
err = lapack.SyevdFloat(x, sigma, la_.OptJobZValue, &la_.IOpt{"n", m},
&la_.IOpt{"lda", m}, &la_.IOpt{"offseta", ind}, &la_.IOpt{"offsetw", ind2})
if m > 0 {
t = append(t, -sigma.GetIndex(ind2))
}
}
ind += m * m
ind2 += m
}
if len(t) > 0 {
rval = maxvec(t)
}
return
}
示例5: triusc
/*
Scales the strictly lower triangular part of the 's' components of x
by 0.5.
*/
func triusc(x *matrix.FloatMatrix, dims *sets.DimensionSet, offset int) error {
//m := dims.Sum("l", "q") + dims.SumSquared("s")
ind := offset + dims.Sum("l", "q")
for _, mk := range dims.At("s") {
for j := 1; j < mk; j++ {
blas.ScalFloat(x, 0.5, &la_.IOpt{"n", mk - j}, &la_.IOpt{"offset", ind + mk*(j-1) + j})
}
ind += mk * mk
}
return nil
}
示例6: sdot
// Inner product of two vectors in S.
func sdot(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) float64 {
/*DEBUGGED*/
ind := mnl + dims.At("l")[0] + dims.Sum("q")
a := blas.DotFloat(x, y, &la_.IOpt{"n", ind})
for _, m := range dims.At("s") {
a += blas.DotFloat(x, y, &la_.IOpt{"offsetx", ind}, &la_.IOpt{"offsety", ind},
&la_.IOpt{"incx", m + 1}, &la_.IOpt{"incy", m + 1}, &la_.IOpt{"n", m})
for j := 1; j < m; j++ {
a += 2.0 * blas.DotFloat(x, y, &la_.IOpt{"offsetx", ind + j}, &la_.IOpt{"offsety", ind + j},
&la_.IOpt{"incx", m + 1}, &la_.IOpt{"incy", m + 1}, &la_.IOpt{"n", m - j})
}
ind += m * m
}
return a
}
示例7: trisc
/*
Sets upper triangular part of the 's' components of x equal to zero
and scales the strictly lower triangular part by 2.0.
*/
func trisc(x *matrix.FloatMatrix, dims *sets.DimensionSet, offset int) error {
//m := dims.Sum("l", "q") + dims.SumSquared("s")
ind := offset + dims.Sum("l", "q")
for _, mk := range dims.At("s") {
for j := 1; j < mk; j++ {
blas.ScalFloat(x, 0.0, la_.IntOpt("n", mk-j), la_.IntOpt("inc", mk),
la_.IntOpt("offset", ind+j*(mk+1)-1))
blas.ScalFloat(x, 2.0, la_.IntOpt("n", mk-j), la_.IntOpt("offset", ind+mk*(j-1)+j))
}
ind += mk * mk
}
return nil
}
示例8: ssqr
// The product x := y o y. The 's' components of y are diagonal and
// only the diagonals of x and y are stored.
func ssqr(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (err error) {
/*DEBUGGED*/
blas.Copy(y, x)
ind := mnl + dims.At("l")[0]
err = blas.Tbmv(y, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1})
if err != nil {
return
}
for _, m := range dims.At("q") {
v := blas.Nrm2Float(y, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind})
x.SetIndex(ind, v*v)
blas.ScalFloat(x, 2.0*y.GetIndex(ind), &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1})
ind += m
}
err = blas.Tbmv(y, x, &la_.IOpt{"n", dims.Sum("s")}, &la_.IOpt{"k", 0},
&la_.IOpt{"lda", 1}, &la_.IOpt{"offseta", ind}, &la_.IOpt{"offsetx", ind})
return
}
示例9: unpack
/*
The vector x is an element of S, with the 's' components stored
in unpacked storage and off-diagonal entries scaled by sqrt(2).
On return, x is copied to y with the 's' components stored in
unpacked storage.
*/
func unpack(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, opts ...la_.Option) (err error) {
/*DEBUGGED*/
err = nil
mnl := la_.GetIntOpt("mnl", 0, opts...)
offsetx := la_.GetIntOpt("offsetx", 0, opts...)
offsety := la_.GetIntOpt("offsety", 0, opts...)
nlq := mnl + dims.At("l")[0] + dims.Sum("q")
err = blas.Copy(x, y, &la_.IOpt{"n", nlq}, &la_.IOpt{"offsetx", offsetx},
&la_.IOpt{"offsety", offsety})
if err != nil {
return
}
ip, iu := offsetx+nlq, offsety+nlq
for _, n := range dims.At("s") {
for k := 0; k < n; k++ {
err = blas.Copy(x, y, &la_.IOpt{"n", n - k}, &la_.IOpt{"offsetx", ip},
&la_.IOpt{"offsety", iu + k*(n+1)})
if err != nil {
return
}
ip += n - k
blas.ScalFloat(y, 1.0/math.Sqrt(2.0),
&la_.IOpt{"n", n - k - 1}, &la_.IOpt{"offset", iu + k*(n+1) + 1})
}
iu += n * n
}
/*
nu := dims.SumSquared("s")
fmt.Printf("-- UnPack: nu=%d, offset=%d\n", nu, offsety+nlq)
err = blas.ScalFloat(y,
&la_.IOpt{"n", nu}, &la_.IOpt{"offset", offsety+nlq})
*/
return
}
示例10: CplCustomMatrix
// Solves a convex optimization problem with a linear objective
//
// minimize c'*x
// subject to f(x) <= 0
// G*x <= h
// A*x = b.
//
// using custom KTT equation solver and custom constraints G and A.
//
func CplCustomMatrix(F ConvexProg, c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix,
A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver,
solopts *SolverOptions) (sol *Solution, err error) {
var mnl int
var x0 *matrix.FloatMatrix
mnl, x0, err = F.F0()
if err != nil {
return
}
if x0.Cols() != 1 {
err = errors.New("'x0' must be matrix with one column")
return
}
if c == nil {
err = errors.New("'c' must be non nil matrix")
return
}
if !c.SizeMatch(x0.Size()) {
err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows()))
return
}
if h == nil {
h = matrix.FloatZeros(0, 1)
}
if h.Cols() > 1 {
err = errors.New("'h' must be matrix with 1 column")
return
}
if dims == nil {
dims = sets.NewDimensionSet("l", "q", "s")
dims.Set("l", []int{h.Rows()})
}
cdim := dims.Sum("l", "q") + dims.SumSquared("s")
if h.Rows() != cdim {
err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
return
}
// Check b and set defaults if it is nil
if b == nil {
b = matrix.FloatZeros(0, 1)
}
if b.Cols() != 1 {
estr := fmt.Sprintf("'b' must be a matrix with 1 column")
err = errors.New(estr)
return
}
mc := matrixVar{c}
mb := matrixVar{b}
var mG MatrixVarG
var mA MatrixVarA
if G == nil {
mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims}
} else {
mG = &matrixIfG{G}
}
if A == nil {
mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())}
} else {
mA = &matrixIfA{A}
}
return cpl_problem(F, &mc, mG, h, mA, &mb, dims, kktsolver, solopts, x0, mnl)
}
示例11: CplCustomKKT
// Solves a convex optimization problem with a linear objective
//
// minimize c'*x
// subject to f(x) <= 0
// G*x <= h
// A*x = b.
//
// using custom KTT equation solver.
//
func CplCustomKKT(F ConvexProg, c *matrix.FloatMatrix, G, h, A, b *matrix.FloatMatrix,
dims *sets.DimensionSet, kktsolver KKTCpSolver,
solopts *SolverOptions) (sol *Solution, err error) {
var mnl int
var x0 *matrix.FloatMatrix
mnl, x0, err = F.F0()
if err != nil {
return
}
if x0.Cols() != 1 {
err = errors.New("'x0' must be matrix with one column")
return
}
if c == nil {
err = errors.New("'c' must be non nil matrix")
return
}
if !c.SizeMatch(x0.Size()) {
err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows()))
return
}
if h == nil {
h = matrix.FloatZeros(0, 1)
}
if h.Cols() > 1 {
err = errors.New("'h' must be matrix with 1 column")
return
}
if dims == nil {
dims = sets.NewDimensionSet("l", "q", "s")
dims.Set("l", []int{h.Rows()})
}
cdim := dims.Sum("l", "q") + dims.SumSquared("s")
if h.Rows() != cdim {
err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
return
}
if G == nil {
G = matrix.FloatZeros(0, c.Rows())
}
if !G.SizeMatch(cdim, c.Rows()) {
estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows())
err = errors.New(estr)
return
}
// Check A and set defaults if it is nil
if A == nil {
// zeros rows reduces Gemv to vector products
A = matrix.FloatZeros(0, c.Rows())
}
if A.Cols() != c.Rows() {
estr := fmt.Sprintf("'A' must have %d columns", c.Rows())
err = errors.New(estr)
return
}
// Check b and set defaults if it is nil
if b == nil {
b = matrix.FloatZeros(0, 1)
}
if b.Cols() != 1 {
estr := fmt.Sprintf("'b' must be a matrix with 1 column")
err = errors.New(estr)
return
}
if b.Rows() != A.Rows() {
estr := fmt.Sprintf("'b' must have length %d", A.Rows())
err = errors.New(estr)
return
}
var mc = matrixVar{c}
var mb = matrixVar{b}
var mA = matrixVarA{A}
var mG = matrixVarG{G, dims}
return cpl_problem(F, &mc, &mG, h, &mA, &mb, dims, kktsolver, solopts, x0, mnl)
}
示例12: scale2
/*
Evaluates
x := H(lambda^{1/2}) * x (inverse is 'N')
x := H(lambda^{-1/2}) * x (inverse is 'I').
H is the Hessian of the logarithmic barrier.
*/
func scale2(lmbda, x *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int, inverse bool) (err error) {
err = nil
//var minor int = 0
//if ! checkpnt.MinorEmpty() {
// minor = checkpnt.MinorTop()
//}
//fmt.Printf("\n%d.%04d scale2 x=\n%v\nlmbda=\n%v\n", checkpnt.Major(), minor,
// x.ToString("%.17f"), lmbda.ToString("%.17f"))
//if ! checkpnt.MinorEmpty() {
// checkpnt.Check("000scale2", minor)
//}
// For the nonlinear and 'l' blocks,
//
// xk := xk ./ l (inverse is 'N')
// xk := xk .* l (inverse is 'I')
//
// where l is lmbda[:mnl+dims['l']].
ind := mnl + dims.Sum("l")
if !inverse {
blas.TbsvFloat(lmbda, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1})
} else {
blas.TbmvFloat(lmbda, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1})
}
//if ! checkpnt.MinorEmpty() {
// checkpnt.Check("010scale2", minor)
//}
// For 'q' blocks, if inverse is 'N',
//
// xk := 1/a * [ l'*J*xk;
// xk[1:] - (xk[0] + l'*J*xk) / (l[0] + 1) * l[1:] ].
//
// If inverse is 'I',
//
// xk := a * [ l'*xk;
// xk[1:] + (xk[0] + l'*xk) / (l[0] + 1) * l[1:] ].
//
// a = sqrt(lambda_k' * J * lambda_k), l = lambda_k / a.
for _, m := range dims.At("q") {
var lx, a, c, x0 float64
a = jnrm2(lmbda, m, ind) //&la_.IOpt{"n", m}, &la_.IOpt{"offset", ind})
if !inverse {
lx = jdot(lmbda, x, m, ind, ind) //&la_.IOpt{"n", m}, &la_.IOpt{"offsetx", ind},
//&la_.IOpt{"offsety", ind})
lx /= a
} else {
lx = blas.DotFloat(lmbda, x, &la_.IOpt{"n", m}, &la_.IOpt{"offsetx", ind},
&la_.IOpt{"offsety", ind})
lx /= a
}
x0 = x.GetIndex(ind)
x.SetIndex(ind, lx)
c = (lx + x0) / (lmbda.GetIndex(ind)/a + 1.0) / a
if !inverse {
c *= -1.0
}
blas.AxpyFloat(lmbda, x, c, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offsetx", ind + 1},
&la_.IOpt{"offsety", ind + 1})
if !inverse {
a = 1.0 / a
}
blas.ScalFloat(x, a, &la_.IOpt{"offset", ind}, &la_.IOpt{"n", m})
ind += m
}
//if ! checkpnt.MinorEmpty() {
// checkpnt.Check("020scale2", minor)
//}
// For the 's' blocks, if inverse is 'N',
//
// xk := vec( diag(l)^{-1/2} * mat(xk) * diag(k)^{-1/2}).
//
// If inverse is true,
//
// xk := vec( diag(l)^{1/2} * mat(xk) * diag(k)^{1/2}).
//
// where l is kth block of lambda.
//
// We scale upper and lower triangular part of mat(xk) because the
// inverse operation will be applied to nonsymmetric matrices.
ind2 := ind
sdims := dims.At("s")
for k := 0; k < len(sdims); k++ {
m := sdims[k]
scaleF := func(v, x float64) float64 {
//.........這裏部分代碼省略.........
示例13: ConeLpCustomKKT
// Solves a pair of primal and dual cone programs using custom KKT solver.
//
func ConeLpCustomKKT(c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet,
kktsolver KKTConeSolver, solopts *SolverOptions, primalstart,
dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
if c == nil || c.Cols() > 1 {
err = errors.New("'c' must be matrix with 1 column")
return
}
if h == nil {
h = matrix.FloatZeros(0, 1)
}
if h.Cols() > 1 {
err = errors.New("'h' must be matrix with 1 column")
return
}
if dims == nil {
dims = sets.NewDimensionSet("l", "q", "s")
dims.Set("l", []int{h.Rows()})
}
cdim := dims.Sum("l", "q") + dims.SumSquared("s")
cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
//cdim_diag := dims.Sum("l", "q", "s")
if G == nil {
G = matrix.FloatZeros(0, c.Rows())
}
if !G.SizeMatch(cdim, c.Rows()) {
estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows())
err = errors.New(estr)
return
}
// Check A and set defaults if it is nil
if A == nil {
// zeros rows reduces Gemv to vector products
A = matrix.FloatZeros(0, c.Rows())
}
if A.Cols() != c.Rows() {
estr := fmt.Sprintf("'A' must have %d columns", c.Rows())
err = errors.New(estr)
return
}
// Check b and set defaults if it is nil
if b == nil {
b = matrix.FloatZeros(0, 1)
}
if b.Cols() != 1 {
estr := fmt.Sprintf("'b' must be a matrix with 1 column")
err = errors.New(estr)
return
}
if b.Rows() != A.Rows() {
estr := fmt.Sprintf("'b' must have length %d", A.Rows())
err = errors.New(estr)
return
}
if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() {
err = errors.New("Rank(A) < p or Rank([G; A]) < n")
return
}
mA := &matrixVarA{A}
mG := &matrixVarG{G, dims}
mc := &matrixVar{c}
mb := &matrixVar{b}
return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart)
}
示例14: conelp_solver
func conelp_solver(c MatrixVariable, G MatrixVarG, h *matrix.FloatMatrix,
A MatrixVarA, b MatrixVariable, dims *sets.DimensionSet, kktsolver KKTConeSolverVar,
solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
err = nil
const EXPON = 3
const STEP = 0.99
sol = &Solution{Unknown,
nil,
0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0}
var refinement int
if solopts.Refinement > 0 {
refinement = solopts.Refinement
} else {
refinement = 0
if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 {
refinement = 1
}
}
feasTolerance := FEASTOL
absTolerance := ABSTOL
relTolerance := RELTOL
maxIter := MAXITERS
if solopts.FeasTol > 0.0 {
feasTolerance = solopts.FeasTol
}
if solopts.AbsTol > 0.0 {
absTolerance = solopts.AbsTol
}
if solopts.RelTol > 0.0 {
relTolerance = solopts.RelTol
}
if solopts.MaxIter > 0 {
maxIter = solopts.MaxIter
}
if err = checkConeLpDimensions(dims); err != nil {
return
}
cdim := dims.Sum("l", "q") + dims.SumSquared("s")
//cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
cdim_diag := dims.Sum("l", "q", "s")
if h.Rows() != cdim {
err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
return
}
// Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G.
indq := make([]int, 0)
indq = append(indq, dims.At("l")[0])
for _, k := range dims.At("q") {
indq = append(indq, indq[len(indq)-1]+k)
}
// Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G.
inds := make([]int, 0)
inds = append(inds, indq[len(indq)-1])
for _, k := range dims.At("s") {
inds = append(inds, inds[len(inds)-1]+k*k)
}
Gf := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
return G.Gf(x, y, alpha, beta, trans)
}
Af := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
return A.Af(x, y, alpha, beta, trans)
}
// kktsolver(W) returns a routine for solving 3x3 block KKT system
//
// [ 0 A' G'*W^{-1} ] [ ux ] [ bx ]
// [ A 0 0 ] [ uy ] = [ by ].
// [ G 0 -W' ] [ uz ] [ bz ]
if kktsolver == nil {
err = errors.New("nil kktsolver not allowed.")
return
}
// res() evaluates residual in 5x5 block KKT system
//
// [ vx ] [ 0 ] [ 0 A' G' c ] [ ux ]
// [ vy ] [ 0 ] [-A 0 0 b ] [ uy ]
// [ vz ] += [ W'*us ] - [-G 0 0 h ] [ W^{-1}*uz ]
// [ vtau ] [ dg*ukappa ] [-c' -b' -h' 0 ] [ utau/dg ]
//
// vs += lmbda o (dz + ds)
// vkappa += lmbdg * (dtau + dkappa).
ws3 := matrix.FloatZeros(cdim, 1)
wz3 := matrix.FloatZeros(cdim, 1)
checkpnt.AddMatrixVar("ws3", ws3)
checkpnt.AddMatrixVar("wz3", wz3)
//
//.........這裏部分代碼省略.........
示例15: ConeLpCustomMatrix
// Solves a pair of primal and dual cone programs using custom KKT solver and constraint
// interfaces MatrixG and MatrixA
//
func ConeLpCustomMatrix(c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix,
A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTConeSolver,
solopts *SolverOptions, primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
err = nil
if c == nil || c.Cols() > 1 {
err = errors.New("'c' must be matrix with 1 column")
return
}
if h == nil || h.Cols() > 1 {
err = errors.New("'h' must be matrix with 1 column")
return
}
if err = checkConeLpDimensions(dims); err != nil {
return
}
cdim := dims.Sum("l", "q") + dims.SumSquared("s")
cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
//cdim_diag := dims.Sum("l", "q", "s")
if h.Rows() != cdim {
err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
return
}
// Data for kth 'q' constraint are found in rows indq[k]:indq[k+1] of G.
indq := make([]int, 0)
indq = append(indq, dims.At("l")[0])
for _, k := range dims.At("q") {
indq = append(indq, indq[len(indq)-1]+k)
}
// Data for kth 's' constraint are found in rows inds[k]:inds[k+1] of G.
inds := make([]int, 0)
inds = append(inds, indq[len(indq)-1])
for _, k := range dims.At("s") {
inds = append(inds, inds[len(inds)-1]+k*k)
}
// Check b and set defaults if it is nil
if b == nil {
b = matrix.FloatZeros(0, 1)
}
if b.Cols() != 1 {
estr := fmt.Sprintf("'b' must be a matrix with 1 column")
err = errors.New(estr)
return
}
if b.Rows() > c.Rows() || b.Rows()+cdim_pckd < c.Rows() {
err = errors.New("Rank(A) < p or Rank([G; A]) < n")
return
}
if kktsolver == nil {
err = errors.New("nil kktsolver not allowed.")
return
}
var mA MatrixVarA
var mG MatrixVarG
if G == nil {
mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims}
} else {
mG = &matrixIfG{G}
}
if A == nil {
mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())}
} else {
mA = &matrixIfA{A}
}
var mc = &matrixVar{c}
var mb = &matrixVar{b}
return conelp_problem(mc, mG, h, mA, mb, dims, kktsolver, solopts, primalstart, dualstart)
}