當前位置: 首頁>>代碼示例>>Golang>>正文


Golang FloatMatrix.Size方法代碼示例

本文整理匯總了Golang中github.com/henrylee2cn/algorithm/matrix.FloatMatrix.Size方法的典型用法代碼示例。如果您正苦於以下問題:Golang FloatMatrix.Size方法的具體用法?Golang FloatMatrix.Size怎麽用?Golang FloatMatrix.Size使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在github.com/henrylee2cn/algorithm/matrix.FloatMatrix的用法示例。


在下文中一共展示了FloatMatrix.Size方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。

示例1: SolveTrm

// Solve multiple right sides. If flags&UNIT then A diagonal is assumed to
// to unit and is not referenced. (blas.TRSM)
//      alpha*B = A.-1*B if flags&LEFT
//      alpha*B = A.-T*B if flags&(LEFT|TRANS)
//      alpha*B = B*A.-1 if flags&RIGHT
//      alpha*B = B*A.-T if flags&(RIGHT|TRANS)
//
// Matrix A is N*N triangular matrix defined with flags bits as follow
//  LOWER       non-unit lower triangular
//  LOWER|UNIT  unit lower triangular
//  UPPER       non-unit upper triangular
//  UPPER|UNIT  unit upper triangular
//
// Matrix B is N*P if flags&LEFT or P*N if flags&RIGHT.
//
func SolveTrm(B, A *matrix.FloatMatrix, alpha float64, flags Flags) error {

	ok := true
	empty := false
	br, bc := B.Size()
	ar, ac := A.Size()
	switch flags & (LEFT | RIGHT) {
	case LEFT:
		empty = br == 0
		ok = br == ac && ac == ar
	case RIGHT:
		empty = bc == 0
		ok = bc == ar && ac == ar
	}
	if empty {
		return nil
	}
	if !ok {
		return onError("A, B size mismatch")
	}

	Ar := A.FloatArray()
	ldA := A.LeadingIndex()
	Br := B.FloatArray()
	ldB := B.LeadingIndex()

	E := bc
	if flags&RIGHT != 0 {
		E = br
	}
	// if more workers available can divide to tasks by B columns if flags&LEFT or by
	// B rows if flags&RIGHT.
	calgo.DSolveBlk(Br, Ar, alpha, calgo.Flags(flags), ldB, ldA, ac, 0, E, nB)
	return nil
}
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:50,代碼來源:mmult.go

示例2: Mult

// Generic matrix-matrix multpily. (blas.GEMM). Calculates
//   C = beta*C + alpha*A*B     (default)
//   C = beta*C + alpha*A.T*B   flags&TRANSA
//   C = beta*C + alpha*A*B.T   flags&TRANSB
//   C = beta*C + alpha*A.T*B.T flags&(TRANSA|TRANSB)
//
// C is M*N, A is M*P or P*M if flags&TRANSA. B is P*N or N*P if flags&TRANSB.
//
func Mult(C, A, B *matrix.FloatMatrix, alpha, beta float64, flags Flags) error {
	var ok, empty bool
	// error checking must take in account flag values!

	ar, ac := A.Size()
	br, bc := B.Size()
	cr, cc := C.Size()
	switch flags & (TRANSA | TRANSB) {
	case TRANSA | TRANSB:
		empty = ac == 0 || br == 0
		ok = cr == ac && cc == br && ar == bc
	case TRANSA:
		empty = ac == 0 || bc == 0
		ok = cr == ac && cc == bc && ar == br
	case TRANSB:
		empty = ar == 0 || br == 0
		ok = cr == ar && cc == br && ac == bc
	default:
		empty = ar == 0 || bc == 0
		ok = cr == ar && cc == bc && ac == br

	}
	if empty {
		return nil
	}
	if !ok {
		return errors.New("Mult: size mismatch")
	}

	psize := int64(C.NumElements()) * int64(A.Cols())
	Ar := A.FloatArray()
	ldA := A.LeadingIndex()
	Br := B.FloatArray()
	ldB := B.LeadingIndex()
	Cr := C.FloatArray()
	ldC := C.LeadingIndex()

	// matrix A, B common dimension
	P := A.Cols()
	if flags&TRANSA != 0 {
		P = A.Rows()
	}

	if nWorker <= 1 || psize <= limitOne {
		calgo.DMult(Cr, Ar, Br, alpha, beta, calgo.Flags(flags), ldC, ldA, ldB, P,
			0, C.Cols(), 0, C.Rows(),
			vpLen, nB, mB)
		return nil
	}
	// here we have more than one worker available
	worker := func(cstart, cend, rstart, rend int, ready chan int) {
		calgo.DMult(Cr, Ar, Br, alpha, beta, calgo.Flags(flags), ldC, ldA, ldB, P,
			cstart, cend, rstart, rend, vpLen, nB, mB)
		ready <- 1
	}
	colworks, rowworks := divideWork(C.Rows(), C.Cols(), nWorker)
	scheduleWork(colworks, rowworks, C.Cols(), C.Rows(), worker)
	return nil
}
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:67,代碼來源:mmult.go

示例3: MultSym

// Symmetric matrix multiply. (blas.SYMM)
//   C = beta*C + alpha*A*B     (default)
//   C = beta*C + alpha*A.T*B   flags&TRANSA
//   C = beta*C + alpha*A*B.T   flags&TRANSB
//   C = beta*C + alpha*A.T*B.T flags&(TRANSA|TRANSB)
//
// C is N*P, A is N*N symmetric matrix. B is N*P or P*N if flags&TRANSB.
//
func MultSym(C, A, B *matrix.FloatMatrix, alpha, beta float64, flags Flags) error {
	var ok, empty bool

	ar, ac := A.Size()
	br, bc := B.Size()
	cr, cc := C.Size()
	switch flags & (TRANSA | TRANSB) {
	case TRANSA | TRANSB:
		empty = ac == 0 || br == 0
		ok = ar == ac && cr == ac && cc == br && ar == bc
	case TRANSA:
		empty = ac == 0 || bc == 0
		ok = ar == ac && cr == ac && cc == bc && ar == br
	case TRANSB:
		empty = ar == 0 || br == 0
		ok = ar == ac && cr == ar && cc == br && ac == bc
	default:
		empty = ar == 0 || bc == 0
		ok = ar == ac && cr == ar && cc == bc && ac == br
	}
	if empty {
		return nil
	}
	if !ok {
		return errors.New("MultSym: size mismatch")
	}
	/*
	   if A.Rows() != A.Cols() {
	       return errors.New("A matrix not square matrix.");
	   }
	   if A.Cols() != B.Rows() {
	       return errors.New("A.cols != B.rows: size mismatch")
	   }
	*/
	psize := int64(C.NumElements()) * int64(A.Cols())
	Ar := A.FloatArray()
	ldA := A.LeadingIndex()
	Br := B.FloatArray()
	ldB := B.LeadingIndex()
	Cr := C.FloatArray()
	ldC := C.LeadingIndex()

	if nWorker <= 1 || psize <= limitOne {
		calgo.DMultSymm(Cr, Ar, Br, alpha, beta, calgo.Flags(flags), ldC, ldA, ldB,
			A.Cols(), 0, C.Cols(), 0, C.Rows(), vpLen, nB, mB)
		return nil
	}
	// here we have more than one worker available
	worker := func(cstart, cend, rstart, rend int, ready chan int) {
		calgo.DMultSymm(Cr, Ar, Br, alpha, beta, calgo.Flags(flags), ldC, ldA, ldB,
			A.Cols(), cstart, cend, rstart, rend, vpLen, nB, mB)
		ready <- 1
	}
	colworks, rowworks := divideWork(C.Rows(), C.Cols(), nWorker)
	scheduleWork(colworks, rowworks, C.Cols(), C.Rows(), worker)
	return nil
}
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:65,代碼來源:mmult.go

示例4: Cpl

// Solves a convex optimization problem with a linear objective
//
//        minimize    c'*x
//        subject to  f(x) <= 0
//                    G*x <= h
//                    A*x = b.
//
// f is vector valued, convex and twice differentiable.  The linear
// inequalities are with respect to a cone C defined as the Cartesian
// product of N + M + 1 cones:
//
//        C = C_0 x C_1 x .... x C_N x C_{N+1} x ... x C_{N+M}.
//
// The first cone C_0 is the nonnegative orthant of dimension ml.  The
// next N cones are second order cones of dimension r[0], ..., r[N-1].
// The second order cone of dimension m is defined as
//
//        { (u0, u1) in R x R^{m-1} | u0 >= ||u1||_2 }.
//
// The next M cones are positive semidefinite cones of order t[0], ..., t[M-1] >= 0.
//
// The structure of C is specified by DimensionSet dims which holds following sets
//
//   dims.At("l")  l, the dimension of the nonnegative orthant (array of length 1)
//   dims.At("q")  r[0], ... r[N-1], list with the dimesions of the second-order cones
//   dims.At("s")  t[0], ... t[M-1], array with the dimensions of the positive
//                 semidefinite cones
//
// The default value for dims is l: []int{h.Rows()}, q: []int{}, s: []int{}.
//
// On exit Solution contains the result and information about the accurancy of the
// solution. if SolutionStatus is Optimal then Solution.Result contains solutions
// for the problems.
//
//   Result.At("x")[0]    primal solution
//   Result.At("snl")[0]  non-linear constraint slacks
//   Result.At("sl")[0]   linear constraint slacks
//   Result.At("y")[0]    values for linear equality constraints y
//   Result.At("znl")[0]  values of dual variables for nonlinear inequalities
//   Result.At("zl")[0]   values of dual variables for linear inequalities
//
// If err is non-nil then sol is nil and err contains information about the argument or
// computation error.
//
func Cpl(F ConvexProg, c, G, h, A, b *matrix.FloatMatrix, dims *sets.DimensionSet, solopts *SolverOptions) (sol *Solution, err error) {

	var mnl int
	var x0 *matrix.FloatMatrix

	mnl, x0, err = F.F0()
	if err != nil {
		return
	}

	if x0.Cols() != 1 {
		err = errors.New("'x0' must be matrix with one column")
		return
	}
	if c == nil {
		err = errors.New("'c' must be non nil matrix")
		return
	}
	if !c.SizeMatch(x0.Size()) {
		err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows()))
		return
	}

	if h == nil {
		h = matrix.FloatZeros(0, 1)
	}
	if h.Cols() > 1 {
		err = errors.New("'h' must be matrix with 1 column")
		return
	}

	if dims == nil {
		dims = sets.NewDimensionSet("l", "q", "s")
		dims.Set("l", []int{h.Rows()})
	}

	cdim := dims.Sum("l", "q") + dims.SumSquared("s")
	//cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")
	//cdim_diag := dims.Sum("l", "q", "s")

	if h.Rows() != cdim {
		err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
		return
	}

	if G == nil {
		G = matrix.FloatZeros(0, c.Rows())
	}
	if !G.SizeMatch(cdim, c.Rows()) {
		estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows())
		err = errors.New(estr)
		return
	}

	// Check A and set defaults if it is nil
	if A == nil {
//.........這裏部分代碼省略.........
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:101,代碼來源:cpl.go

示例5: CplCustomMatrix

// Solves a convex optimization problem with a linear objective
//
//        minimize    c'*x
//        subject to  f(x) <= 0
//                    G*x <= h
//                    A*x = b.
//
// using custom KTT equation solver and custom constraints G and A.
//
func CplCustomMatrix(F ConvexProg, c *matrix.FloatMatrix, G MatrixG, h *matrix.FloatMatrix,
	A MatrixA, b *matrix.FloatMatrix, dims *sets.DimensionSet, kktsolver KKTCpSolver,
	solopts *SolverOptions) (sol *Solution, err error) {

	var mnl int
	var x0 *matrix.FloatMatrix

	mnl, x0, err = F.F0()
	if err != nil {
		return
	}

	if x0.Cols() != 1 {
		err = errors.New("'x0' must be matrix with one column")
		return
	}
	if c == nil {
		err = errors.New("'c' must be non nil matrix")
		return
	}
	if !c.SizeMatch(x0.Size()) {
		err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows()))
		return
	}

	if h == nil {
		h = matrix.FloatZeros(0, 1)
	}
	if h.Cols() > 1 {
		err = errors.New("'h' must be matrix with 1 column")
		return
	}

	if dims == nil {
		dims = sets.NewDimensionSet("l", "q", "s")
		dims.Set("l", []int{h.Rows()})
	}

	cdim := dims.Sum("l", "q") + dims.SumSquared("s")

	if h.Rows() != cdim {
		err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
		return
	}

	// Check b and set defaults if it is nil
	if b == nil {
		b = matrix.FloatZeros(0, 1)
	}
	if b.Cols() != 1 {
		estr := fmt.Sprintf("'b' must be a matrix with 1 column")
		err = errors.New(estr)
		return
	}

	mc := matrixVar{c}
	mb := matrixVar{b}
	var mG MatrixVarG
	var mA MatrixVarA

	if G == nil {
		mG = &matrixVarG{matrix.FloatZeros(0, c.Rows()), dims}
	} else {
		mG = &matrixIfG{G}
	}
	if A == nil {
		mA = &matrixVarA{matrix.FloatZeros(0, c.Rows())}
	} else {
		mA = &matrixIfA{A}
	}

	return cpl_problem(F, &mc, mG, h, mA, &mb, dims, kktsolver, solopts, x0, mnl)
}
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:82,代碼來源:cpl.go

示例6: CplCustomKKT

// Solves a convex optimization problem with a linear objective
//
//        minimize    c'*x
//        subject to  f(x) <= 0
//                    G*x <= h
//                    A*x = b.
//
// using custom KTT equation solver.
//
func CplCustomKKT(F ConvexProg, c *matrix.FloatMatrix, G, h, A, b *matrix.FloatMatrix,
	dims *sets.DimensionSet, kktsolver KKTCpSolver,
	solopts *SolverOptions) (sol *Solution, err error) {

	var mnl int
	var x0 *matrix.FloatMatrix

	mnl, x0, err = F.F0()
	if err != nil {
		return
	}

	if x0.Cols() != 1 {
		err = errors.New("'x0' must be matrix with one column")
		return
	}
	if c == nil {
		err = errors.New("'c' must be non nil matrix")
		return
	}
	if !c.SizeMatch(x0.Size()) {
		err = errors.New(fmt.Sprintf("'c' must be matrix of size (%d,1)", x0.Rows()))
		return
	}

	if h == nil {
		h = matrix.FloatZeros(0, 1)
	}
	if h.Cols() > 1 {
		err = errors.New("'h' must be matrix with 1 column")
		return
	}

	if dims == nil {
		dims = sets.NewDimensionSet("l", "q", "s")
		dims.Set("l", []int{h.Rows()})
	}

	cdim := dims.Sum("l", "q") + dims.SumSquared("s")

	if h.Rows() != cdim {
		err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
		return
	}

	if G == nil {
		G = matrix.FloatZeros(0, c.Rows())
	}
	if !G.SizeMatch(cdim, c.Rows()) {
		estr := fmt.Sprintf("'G' must be of size (%d,%d)", cdim, c.Rows())
		err = errors.New(estr)
		return
	}

	// Check A and set defaults if it is nil
	if A == nil {
		// zeros rows reduces Gemv to vector products
		A = matrix.FloatZeros(0, c.Rows())
	}
	if A.Cols() != c.Rows() {
		estr := fmt.Sprintf("'A' must have %d columns", c.Rows())
		err = errors.New(estr)
		return
	}

	// Check b and set defaults if it is nil
	if b == nil {
		b = matrix.FloatZeros(0, 1)
	}
	if b.Cols() != 1 {
		estr := fmt.Sprintf("'b' must be a matrix with 1 column")
		err = errors.New(estr)
		return
	}
	if b.Rows() != A.Rows() {
		estr := fmt.Sprintf("'b' must have length %d", A.Rows())
		err = errors.New(estr)
		return
	}

	var mc = matrixVar{c}
	var mb = matrixVar{b}
	var mA = matrixVarA{A}
	var mG = matrixVarG{G, dims}

	return cpl_problem(F, &mc, &mG, h, &mA, &mb, dims, kktsolver, solopts, x0, mnl)
}
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:96,代碼來源:cpl.go

示例7: blockedQRT

func blockedQRT(A, T, W *matrix.FloatMatrix, nb int) {
	var ATL, ATR, ABL, ABR, AL, AR matrix.FloatMatrix
	var A00, A01, A02, A10, A11, A12, A20, A21, A22 matrix.FloatMatrix
	var WT, WB, W0, W1, W2 matrix.FloatMatrix
	var TTL, TTR, TBL, TBR matrix.FloatMatrix
	var T00, T01, T02, T11, T12, T22 matrix.FloatMatrix

	partition2x2(
		&ATL, &ATR,
		&ABL, &ABR, A, 0, 0, pTOPLEFT)
	partition2x2(
		&TTL, &TTR,
		&TBL, &TBR, T, 0, 0, pTOPLEFT)
	partition2x1(
		&WT,
		&WB, W, 0, pTOP)

	for ABR.Rows() > 0 && ABR.Cols() > 0 {
		repartition2x2to3x3(&ATL,
			&A00, &A01, &A02,
			&A10, &A11, &A12,
			&A20, &A21, &A22, A, nb, pBOTTOMRIGHT)
		repartition2x2to3x3(&TTL,
			&T00, &T01, &T02,
			nil, &T11, &T12,
			nil, nil, &T22, T, nb, pBOTTOMRIGHT)
		repartition2x1to3x1(&WT,
			&W0,
			&W1,
			&W2, W, nb, pBOTTOM)
		partition1x2(
			&AL, &AR, &ABR, nb, pLEFT)

		// current block size
		cb, rb := A11.Size()
		if rb < cb {
			cb = rb
		}

		// --------------------------------------------------------

		// decompose left side AL == /A11\
		//                           \A21/
		unblockedQRT(&AL, &T11)

		// update A'tail i.e. A12 and A22 with (I - Y*T*Y.T).T * A'tail
		// compute: Q*T.C == C - Y*(C.T*Y*T).T
		updateWithQT(&A12, &A22, &A11, &A21, &T11, &W2, cb, true)

		// update T01: T01 = -T00*Y1.T*Y2*T11
		//  Y1 = /A10\   Y2 = /A11\
		//       \A20/        \A21/
		//
		updateQRTReflector(&T01, &A10, &A20, &A11, &A21, &T00, &T11)

		// --------------------------------------------------------
		continue3x3to2x2(
			&ATL, &ATR,
			&ABL, &ABR, &A00, &A11, &A22, A, pBOTTOMRIGHT)
		continue3x3to2x2(
			&TTL, &TTR,
			&TBL, &TBR, &T00, &T11, &T22, T, pBOTTOMRIGHT)
		continue3x1to2x1(
			&WT,
			&WB, &W0, &W1, W, pBOTTOM)
	}
}
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:67,代碼來源:qrwy.go

示例8: blockedQR

/*
 * Blocked QR decomposition with compact WY transform. As implemented
 * in lapack.xGEQRF subroutine.
 */
func blockedQR(A, Tvec, Twork, W *matrix.FloatMatrix, nb int) {
	var ATL, ATR, ABL, ABR, AL, AR matrix.FloatMatrix
	var A00, A01, A02, A10, A11, A12, A20, A21, A22 matrix.FloatMatrix
	var TT, TB matrix.FloatMatrix
	var t0, tau, t2, Tdiag, WT, WB, W0, W1, W2 matrix.FloatMatrix
	//var Twork, W *matrix.FloatMatrix

	Tdiag.DiagOf(Twork)

	partition2x2(
		&ATL, &ATR,
		&ABL, &ABR, A, 0, 0, pTOPLEFT)
	partition2x1(
		&TT,
		&TB, Tvec, 0, pTOP)
	partition2x1(
		&WT,
		&WB, W, 0, pTOP)

	for ABR.Rows() > 0 && ABR.Cols() > 0 {
		repartition2x2to3x3(&ATL,
			&A00, &A01, &A02,
			&A10, &A11, &A12,
			&A20, &A21, &A22, A, nb, pBOTTOMRIGHT)
		repartition2x1to3x1(&TT,
			&t0,
			&tau,
			&t2, Tvec, nb, pBOTTOM)
		repartition2x1to3x1(&WT,
			&W0,
			&W1,
			&W2, W, nb, pBOTTOM)
		partition1x2(
			&AL, &AR, &ABR, nb, pLEFT)

		// current block size
		cb, rb := A11.Size()
		if rb < cb {
			cb = rb
		}

		// --------------------------------------------------------

		// decompose left side AL == /A11\
		//                           \A21/
		unblockedQRT(&AL, Twork)

		// copy scaling from T diagonal to tau-vector
		Tdiag.CopyTo(&tau)

		// update A'tail i.e. A12 and A22 with (I - Y*T*Y.T).T * A'tail
		// compute: C - Y*(C.T*Y*T).T
		updateWithQT(&A12, &A22, &A11, &A21, Twork, &W2, cb, true)

		// --------------------------------------------------------
		continue3x3to2x2(
			&ATL, &ATR,
			&ABL, &ABR, &A00, &A11, &A22, A, pBOTTOMRIGHT)
		continue3x1to2x1(
			&TT,
			&TB, &t0, &tau, Tvec, pBOTTOM)
		continue3x1to2x1(
			&WT,
			&WB, &W0, &W1, W, pBOTTOM)
	}
}
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:70,代碼來源:qrwy.go

示例9: acent

// Computes analytic center of A*x <= b with A m by n of rank n.
// We assume that b > 0 and the feasible set is bounded.
func acent(A, b *matrix.FloatMatrix, niters int) (x *matrix.FloatMatrix, ntdecrs []float64, err error) {

	err = nil
	if niters <= 0 {
		niters = MAXITERS
	}
	ntdecrs = make([]float64, 0, niters)

	if A.Rows() != b.Rows() {
		return nil, nil, errors.New("A.Rows() != b.Rows()")
	}

	m, n := A.Size()
	x = matrix.FloatZeros(n, 1)
	H := matrix.FloatZeros(n, n)
	// Helper m*n matrix
	Dmn := matrix.FloatZeros(m, n)

	for i := 0; i < niters; i++ {

		// Gradient is g = A^T * (1.0/(b - A*x)). d = 1.0/(b - A*x)
		// d is m*1 matrix, g is n*1 matrix
		d := matrix.Minus(b, matrix.Times(A, x)).Inv()
		g := matrix.Times(A.Transpose(), d)

		// Hessian is H = A^T * diag(1./(b-A*x))^2 * A.
		// in the original python code expression d[:,n*[0]] creates
		// a m*n matrix where each column is copy of column 0.
		// We do it here manually.
		for i := 0; i < n; i++ {
			Dmn.SetColumn(i, d)
		}

		// Function mul creates element wise product of matrices.
		Asc := matrix.Mul(Dmn, A)
		blas.SyrkFloat(Asc, H, 1.0, 0.0, linalg.OptTrans)

		// Newton step is v = H^-1 * g.
		v := matrix.Scale(g, -1.0)
		PosvFloat(H, v)

		// Directional derivative and Newton decrement.
		lam := blas.DotFloat(g, v)
		ntdecrs = append(ntdecrs, math.Sqrt(-lam))
		if ntdecrs[len(ntdecrs)-1] < TOL {
			return x, ntdecrs, err
		}

		// Backtracking line search.
		// y = d .* A*v
		y := matrix.Mul(d, matrix.Times(A, v))
		step := 1.0
		for 1-step*y.Max() < 0 {
			step *= BETA
		}

	search:
		for {
			// t = -step*y + 1 [e.g. t = 1 - step*y]
			t := matrix.Scale(y, -step).Add(1.0)

			// ts = sum(log(1-step*y))
			ts := t.Log().Sum()
			if -ts < ALPHA*step*lam {
				break search
			}
			step *= BETA
		}
		v.Scale(step)
		x.Plus(v)
	}
	// no solution !!
	err = errors.New(fmt.Sprintf("Iteration %d exhausted\n", niters))
	return x, ntdecrs, err
}
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:77,代碼來源:acent_test.go

示例10: kktLdl

// Solution of KKT equations by a dense LDL factorization of the
// 3 x 3 system.
//
// Returns a function that (1) computes the LDL factorization of
//
// [ H           A'   GG'*W^{-1} ]
// [ A           0    0          ],
// [ W^{-T}*GG   0   -I          ]
//
// given H, Df, W, where GG = [Df; G], and (2) returns a function for
// solving
//
//  [ H     A'   GG'   ]   [ ux ]   [ bx ]
//  [ A     0    0     ] * [ uy ] = [ by ].
//  [ GG    0   -W'*W  ]   [ uz ]   [ bz ]
//
// H is n x n,  A is p x n, Df is mnl x n, G is N x n where
// N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ).
//
func kktLdl(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) {

	p, n := A.Size()
	ldK := n + p + mnl + dims.At("l")[0] + dims.Sum("q") + dims.SumPacked("s")
	K := matrix.FloatZeros(ldK, ldK)
	ipiv := make([]int32, ldK)
	u := matrix.FloatZeros(ldK, 1)
	g := matrix.FloatZeros(mnl+G.Rows(), 1)
	//checkpnt.AddMatrixVar("u", u)
	//checkpnt.AddMatrixVar("K", K)

	factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) {
		var err error = nil
		// Zero K for each call.
		blas.ScalFloat(K, 0.0)
		if H != nil {
			K.SetSubMatrix(0, 0, H)
		}
		K.SetSubMatrix(n, 0, A)
		for k := 0; k < n; k++ {
			// g is (mnl + G.Rows(), 1) matrix, Df is (mnl, n), G is (N, n)
			if mnl > 0 {
				// set values g[0:mnl] = Df[,k]
				g.SetIndexesFromArray(Df.GetColumnArray(k, nil), matrix.MakeIndexSet(0, mnl, 1)...)
			}
			// set values g[mnl:] = G[,k]
			g.SetIndexesFromArray(G.GetColumnArray(k, nil), matrix.MakeIndexSet(mnl, mnl+g.Rows(), 1)...)
			scale(g, W, true, true)
			if err != nil {
				//fmt.Printf("scale error: %s\n", err)
			}
			pack(g, K, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsety", k*ldK + n + p})
		}
		setDiagonal(K, n+p, n+n, ldK, ldK, -1.0)
		err = lapack.Sytrf(K, ipiv)
		if err != nil {
			return nil, err
		}

		solve := func(x, y, z *matrix.FloatMatrix) (err error) {
			// Solve
			//
			//     [ H          A'   GG'*W^{-1} ]   [ ux   ]   [ bx        ]
			//     [ A          0    0          ] * [ uy   [ = [ by        ]
			//     [ W^{-T}*GG  0   -I          ]   [ W*uz ]   [ W^{-T}*bz ]
			//
			// and return ux, uy, W*uz.
			//
			// On entry, x, y, z contain bx, by, bz.  On exit, they contain
			// the solution ux, uy, W*uz.
			err = nil
			blas.Copy(x, u)
			blas.Copy(y, u, &la.IOpt{"offsety", n})
			err = scale(z, W, true, true)
			if err != nil {
				return
			}
			err = pack(z, u, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsety", n + p})
			if err != nil {
				return
			}

			err = lapack.Sytrs(K, u, ipiv)
			if err != nil {
				return
			}

			blas.Copy(u, x, &la.IOpt{"n", n})
			blas.Copy(u, y, &la.IOpt{"n", p}, &la.IOpt{"offsetx", n})
			err = unpack(u, z, dims, &la.IOpt{"mnl", mnl}, &la.IOpt{"offsetx", n + p})
			return
		}
		return solve, err
	}
	return factor, nil
}
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:95,代碼來源:kkt.go

示例11: kktChol2

func kktChol2(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) {

	if len(dims.At("q")) > 0 || len(dims.At("s")) > 0 {
		return nil, errors.New("'chol2' solver only for problems with no second-order or " +
			"semidefinite cone constraints")
	}

	p, n := A.Size()
	ml := dims.At("l")[0]
	F := &chol2Data{firstcall: true, singular: false, A: A, G: G, dims: dims}

	factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) {
		var err error = nil
		minor := 0
		if !checkpnt.MinorEmpty() {
			minor = checkpnt.MinorTop()
		}
		if F.firstcall {
			F.Gs = matrix.FloatZeros(F.G.Size())
			if mnl > 0 {
				F.Dfs = matrix.FloatZeros(Df.Size())
			}
			F.S = matrix.FloatZeros(n, n)
			F.K = matrix.FloatZeros(p, p)
			checkpnt.AddMatrixVar("Gs", F.Gs)
			checkpnt.AddMatrixVar("Dfs", F.Dfs)
			checkpnt.AddMatrixVar("S", F.S)
			checkpnt.AddMatrixVar("K", F.K)
		}

		if mnl > 0 {
			dnli := matrix.FloatZeros(mnl, mnl)
			dnli.SetIndexesFromArray(W.At("dnli")[0].FloatArray(), matrix.DiagonalIndexes(dnli)...)
			blas.GemmFloat(dnli, Df, F.Dfs, 1.0, 0.0)
		}
		checkpnt.Check("02factor_chol2", minor)
		di := matrix.FloatZeros(ml, ml)
		di.SetIndexesFromArray(W.At("di")[0].FloatArray(), matrix.DiagonalIndexes(di)...)
		err = blas.GemmFloat(di, G, F.Gs, 1.0, 0.0)
		checkpnt.Check("06factor_chol2", minor)

		if F.firstcall {
			blas.SyrkFloat(F.Gs, F.S, 1.0, 0.0, la.OptTrans)
			if mnl > 0 {
				blas.SyrkFloat(F.Dfs, F.S, 1.0, 1.0, la.OptTrans)
			}
			if H != nil {
				F.S.Plus(H)
			}
			checkpnt.Check("10factor_chol2", minor)
			err = lapack.Potrf(F.S)
			if err != nil {
				err = nil // reset error
				F.singular = true
				// original code recreates F.S as dense if it is sparse and
				// A is dense, we don't do it as currently no sparse matrices
				//F.S = matrix.FloatZeros(n, n)
				//checkpnt.AddMatrixVar("S", F.S)
				blas.SyrkFloat(F.Gs, F.S, 1.0, 0.0, la.OptTrans)
				if mnl > 0 {
					blas.SyrkFloat(F.Dfs, F.S, 1.0, 1.0, la.OptTrans)
				}
				checkpnt.Check("14factor_chol2", minor)
				blas.SyrkFloat(F.A, F.S, 1.0, 1.0, la.OptTrans)
				if H != nil {
					F.S.Plus(H)
				}
				lapack.Potrf(F.S)
			}
			F.firstcall = false
			checkpnt.Check("20factor_chol2", minor)
		} else {
			blas.SyrkFloat(F.Gs, F.S, 1.0, 0.0, la.OptTrans)
			if mnl > 0 {
				blas.SyrkFloat(F.Dfs, F.S, 1.0, 1.0, la.OptTrans)
			}
			if H != nil {
				F.S.Plus(H)
			}
			checkpnt.Check("40factor_chol2", minor)
			if F.singular {
				blas.SyrkFloat(F.A, F.S, 1.0, 1.0, la.OptTrans)
			}
			lapack.Potrf(F.S)
			checkpnt.Check("50factor_chol2", minor)
		}

		// Asct := L^{-1}*A'.  Factor K = Asct'*Asct.
		Asct := F.A.Transpose()
		blas.TrsmFloat(F.S, Asct, 1.0)
		blas.SyrkFloat(Asct, F.K, 1.0, 0.0, la.OptTrans)
		lapack.Potrf(F.K)
		checkpnt.Check("90factor_chol2", minor)

		solve := func(x, y, z *matrix.FloatMatrix) (err error) {
			// Solve
			//
			//     [ H          A'  GG'*W^{-1} ]   [ ux   ]   [ bx        ]
			//     [ A          0   0          ] * [ uy   ] = [ by        ]
			//     [ W^{-T}*GG  0   -I         ]   [ W*uz ]   [ W^{-T}*bz ]
//.........這裏部分代碼省略.........
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:101,代碼來源:kkt.go

示例12: kktChol

//    Solution of KKT equations by reduction to a 2 x 2 system, a QR
//    factorization to eliminate the equality constraints, and a dense
//    Cholesky factorization of order n-p.
//
//    Computes the QR factorization
//
//        A' = [Q1, Q2] * [R; 0]
//
//    and returns a function that (1) computes the Cholesky factorization
//
//        Q_2^T * (H + GG^T * W^{-1} * W^{-T} * GG) * Q2 = L * L^T,
//
//    given H, Df, W, where GG = [Df; G], and (2) returns a function for
//    solving
//
//        [ H    A'   GG'    ]   [ ux ]   [ bx ]
//        [ A    0    0      ] * [ uy ] = [ by ].
//        [ GG   0    -W'*W  ]   [ uz ]   [ bz ]
//
//    H is n x n,  A is p x n, Df is mnl x n, G is N x n where
//    N = dims['l'] + sum(dims['q']) + sum( k**2 for k in dims['s'] ).
//
func kktChol(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) {

	p, n := A.Size()
	cdim := mnl + dims.Sum("l", "q") + dims.SumSquared("s")
	cdim_pckd := mnl + dims.Sum("l", "q") + dims.SumPacked("s")

	QA := A.Transpose()
	tauA := matrix.FloatZeros(p, 1)
	lapack.Geqrf(QA, tauA)

	Gs := matrix.FloatZeros(cdim, n)
	K := matrix.FloatZeros(n, n)
	bzp := matrix.FloatZeros(cdim_pckd, 1)
	yy := matrix.FloatZeros(p, 1)
	checkpnt.AddMatrixVar("tauA", tauA)
	checkpnt.AddMatrixVar("Gs", Gs)
	checkpnt.AddMatrixVar("K", K)

	factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) {
		// Compute
		//
		//     K = [Q1, Q2]' * (H + GG' * W^{-1} * W^{-T} * GG) * [Q1, Q2]
		//
		// and take the Cholesky factorization of the 2,2 block
		//
		//     Q_2' * (H + GG^T * W^{-1} * W^{-T} * GG) * Q2.

		var err error = nil
		minor := 0
		if !checkpnt.MinorEmpty() {
			minor = checkpnt.MinorTop()
		}
		// Gs = W^{-T} * GG in packed storage.
		if mnl > 0 {
			Gs.SetSubMatrix(0, 0, Df)
		}
		Gs.SetSubMatrix(mnl, 0, G)
		checkpnt.Check("00factor_chol", minor)
		scale(Gs, W, true, true)
		pack2(Gs, dims, mnl)
		//checkpnt.Check("10factor_chol", minor)

		// K = [Q1, Q2]' * (H + Gs' * Gs) * [Q1, Q2].
		blas.SyrkFloat(Gs, K, 1.0, 0.0, la.OptTrans, &la.IOpt{"k", cdim_pckd})
		if H != nil {
			K.SetSubMatrix(0, 0, matrix.Plus(H, K.GetSubMatrix(0, 0, H.Rows(), H.Cols())))
		}
		//checkpnt.Check("20factor_chol", minor)
		symm(K, n, 0)
		lapack.Ormqr(QA, tauA, K, la.OptLeft, la.OptTrans)
		lapack.Ormqr(QA, tauA, K, la.OptRight)
		//checkpnt.Check("30factor_chol", minor)

		// Cholesky factorization of 2,2 block of K.
		lapack.Potrf(K, &la.IOpt{"n", n - p}, &la.IOpt{"offseta", p * (n + 1)})
		checkpnt.Check("40factor_chol", minor)

		solve := func(x, y, z *matrix.FloatMatrix) (err error) {
			// Solve
			//
			//     [ 0          A'  GG'*W^{-1} ]   [ ux   ]   [ bx        ]
			//     [ A          0   0          ] * [ uy   ] = [ by        ]
			//     [ W^{-T}*GG  0   -I         ]   [ W*uz ]   [ W^{-T}*bz ]
			//
			// and return ux, uy, W*uz.
			//
			// On entry, x, y, z contain bx, by, bz.  On exit, they contain
			// the solution ux, uy, W*uz.
			//
			// If we change variables ux = Q1*v + Q2*w, the system becomes
			//
			//     [ K11 K12 R ]   [ v  ]   [Q1'*(bx+GG'*W^{-1}*W^{-T}*bz)]
			//     [ K21 K22 0 ] * [ w  ] = [Q2'*(bx+GG'*W^{-1}*W^{-T}*bz)]
			//     [ R^T 0   0 ]   [ uy ]   [by                           ]
			//
			//     W*uz = W^{-T} * ( GG*ux - bz ).
			minor := 0
			if !checkpnt.MinorEmpty() {
//.........這裏部分代碼省略.........
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:101,代碼來源:kkt.go

示例13: kktQr

// Solution of KKT equations with zero 1,1 block, by eliminating the
// equality constraints via a QR factorization, and solving the
// reduced KKT system by another QR factorization.
//
// Computes the QR factorization
//
//        A' = [Q1, Q2] * [R1; 0]
//
// and returns a function that (1) computes the QR factorization
//
//        W^{-T} * G * Q2 = Q3 * R3
//
// (with columns of W^{-T}*G in packed storage), and (2) returns a function for solving
//
//        [ 0    A'   G'    ]   [ ux ]   [ bx ]
//        [ A    0    0     ] * [ uy ] = [ by ].
//        [ G    0   -W'*W  ]   [ uz ]   [ bz ]
//
// A is p x n and G is N x n where N = dims['l'] + sum(dims['q']) +
// sum( k**2 for k in dims['s'] ).
//
func kktQr(G *matrix.FloatMatrix, dims *sets.DimensionSet, A *matrix.FloatMatrix, mnl int) (kktFactor, error) {

	p, n := A.Size()
	cdim := dims.Sum("l", "q") + dims.SumSquared("s")
	cdim_pckd := dims.Sum("l", "q") + dims.SumPacked("s")

	QA := A.Transpose()
	tauA := matrix.FloatZeros(p, 1)
	lapack.Geqrf(QA, tauA)

	Gs := matrix.FloatZeros(cdim, n)
	tauG := matrix.FloatZeros(n-p, 1)
	u := matrix.FloatZeros(cdim_pckd, 1)
	vv := matrix.FloatZeros(n, 1)
	w := matrix.FloatZeros(cdim_pckd, 1)
	checkpnt.AddMatrixVar("tauA", tauA)
	checkpnt.AddMatrixVar("tauG", tauG)
	checkpnt.AddMatrixVar("Gs", Gs)
	checkpnt.AddMatrixVar("qr_u", u)
	checkpnt.AddMatrixVar("qr_vv", vv)

	factor := func(W *sets.FloatMatrixSet, H, Df *matrix.FloatMatrix) (KKTFunc, error) {
		var err error = nil
		minor := 0
		if !checkpnt.MinorEmpty() {
			minor = checkpnt.MinorTop()
		}

		// Gs = W^{-T}*G, in packed storage.
		blas.Copy(G, Gs)
		//checkpnt.Check("00factor_qr", minor)
		scale(Gs, W, true, true)
		//checkpnt.Check("01factor_qr", minor)
		pack2(Gs, dims, 0)
		//checkpnt.Check("02factor_qr", minor)

		// Gs := [ Gs1, Gs2 ]
		//     = Gs * [ Q1, Q2 ]
		lapack.Ormqr(QA, tauA, Gs, la.OptRight, &la.IOpt{"m", cdim_pckd})
		//checkpnt.Check("03factor_qr", minor)

		// QR factorization Gs2 := [ Q3, Q4 ] * [ R3; 0 ]
		lapack.Geqrf(Gs, tauG, &la.IOpt{"n", n - p}, &la.IOpt{"m", cdim_pckd},
			&la.IOpt{"offseta", Gs.Rows() * p})
		checkpnt.Check("10factor_qr", minor)

		solve := func(x, y, z *matrix.FloatMatrix) (err error) {
			// On entry, x, y, z contain bx, by, bz.  On exit, they
			// contain the solution x, y, W*z of
			//
			//     [ 0         A'  G'*W^{-1} ]   [ x   ]   [bx       ]
			//     [ A         0   0         ] * [ y   ] = [by       ].
			//     [ W^{-T}*G  0   -I        ]   [ W*z ]   [W^{-T}*bz]
			//
			// The system is solved in five steps:
			//
			//       w := W^{-T}*bz - Gs1*R1^{-T}*by
			//       u := R3^{-T}*Q2'*bx + Q3'*w
			//     W*z := Q3*u - w
			//       y := R1^{-1} * (Q1'*bx - Gs1'*(W*z))
			//       x := [ Q1, Q2 ] * [ R1^{-T}*by;  R3^{-1}*u ]

			minor := 0
			if !checkpnt.MinorEmpty() {
				minor = checkpnt.MinorTop()
			}

			// w := W^{-T} * bz in packed storage
			scale(z, W, true, true)
			pack(z, w, dims)
			//checkpnt.Check("00solve_qr", minor)

			// vv := [ Q1'*bx;  R3^{-T}*Q2'*bx ]
			blas.Copy(x, vv)
			lapack.Ormqr(QA, tauA, vv, la.OptTrans)
			lapack.Trtrs(Gs, vv, la.OptUpper, la.OptTrans, &la.IOpt{"n", n - p},
				&la.IOpt{"offseta", Gs.Rows() * p}, &la.IOpt{"offsetb", p})
			//checkpnt.Check("10solve_qr", minor)

//.........這裏部分代碼省略.........
開發者ID:sguzwf,項目名稱:algorithm,代碼行數:101,代碼來源:kkt.go


注:本文中的github.com/henrylee2cn/algorithm/matrix.FloatMatrix.Size方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。