本文整理匯總了Golang中github.com/henrylee2cn/algorithm/matrix.FloatMatrix.SetAt方法的典型用法代碼示例。如果您正苦於以下問題:Golang FloatMatrix.SetAt方法的具體用法?Golang FloatMatrix.SetAt怎麽用?Golang FloatMatrix.SetAt使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類github.com/henrylee2cn/algorithm/matrix.FloatMatrix
的用法示例。
在下文中一共展示了FloatMatrix.SetAt方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Golang代碼示例。
示例1: unblockedInverseLower
// Inverse NON-UNIT diagonal tridiagonal matrix
func unblockedInverseLower(A *matrix.FloatMatrix) (err error) {
var ATL, ATR, ABL, ABR matrix.FloatMatrix
var A00, a10t, a11, A20, a21, A22 matrix.FloatMatrix
err = nil
partition2x2(
&ATL, &ATR,
&ABL, &ABR, A, 0, 0, pTOPLEFT)
for ATL.Rows() < A.Rows() {
repartition2x2to3x3(&ATL,
&A00, nil, nil,
&a10t, &a11, nil,
&A20, &a21, &A22, A, 1, pBOTTOMRIGHT)
// -------------------------------------------------
aval := a11.Float()
// a21 = -a21/a11
InvScale(&a21, -aval)
// A20 = A20 + a21*a10.t
MVRankUpdate(&A20, &a21, &a10t, 1.0)
// a10 = a10/a11
InvScale(&a10t, aval)
// a11 = 1.0/a11
a11.SetAt(0, 0, 1.0/aval)
// -------------------------------------------------
continue3x3to2x2(
&ATL, &ATR,
&ABL, &ABR, &A00, &a11, &A22, A, pBOTTOMRIGHT)
}
return
}
示例2: setDiagonal
func setDiagonal(M *matrix.FloatMatrix, srow, scol, erow, ecol int, val float64) {
for i := srow; i < erow; i++ {
if i < ecol {
M.SetAt(i, i, val)
}
}
}
示例3: unblockedInverseUpper
// Inverse NON-UNIT diagonal tridiagonal matrix
func unblockedInverseUpper(A *matrix.FloatMatrix) (err error) {
var ATL, ATR, ABL, ABR matrix.FloatMatrix
var A00, a01, A02, a11, a12t, A22 matrix.FloatMatrix
err = nil
partition2x2(
&ATL, &ATR,
&ABL, &ABR, A, 0, 0, pTOPLEFT)
for ATL.Rows() < A.Rows() {
repartition2x2to3x3(&ATL,
&A00, &a01, &A02,
nil, &a11, &a12t,
nil, nil, &A22, A, 1, pBOTTOMRIGHT)
// -------------------------------------------------
aval := a11.Float()
// a12 = -a12/a11
InvScale(&a12t, -aval)
// A02 = A02 + a01*a12
MVRankUpdate(&A02, &a01, &a12t, 1.0)
// a01 = a01/a11
InvScale(&a01, aval)
// a11 = 1.0/a11
a11.SetAt(0, 0, 1.0/aval)
// -------------------------------------------------
continue3x3to2x2(
&ATL, &ATR,
&ABL, &ABR, &A00, &a11, &A22, A, pBOTTOMRIGHT)
}
return
}
示例4: unblkQRBlockReflector
/*
* like LAPACK/dlafrt.f
*
* Build block reflector T from HH reflector stored in TriLU(A) and coefficients
* in tau.
*
* Q = I - Y*T*Y.T; Householder H = I - tau*v*v.T
*
* T = | T z | z = -tau*T*Y.T*v
* | 0 c | c = tau
*
* Q = H(1)H(2)...H(k) building forward here.
*/
func unblkQRBlockReflector(T, A, tau *matrix.FloatMatrix) {
var ATL, ATR, ABL, ABR matrix.FloatMatrix
var A00, a10, a11, A20, a21, A22 matrix.FloatMatrix
var TTL, TTR, TBL, TBR matrix.FloatMatrix
var T00, t01, T02, t11, t12, T22 matrix.FloatMatrix
var tT, tB matrix.FloatMatrix
var t0, tau1, t2 matrix.FloatMatrix
partition2x2(
&ATL, &ATR,
&ABL, &ABR, A, 0, 0, pTOPLEFT)
partition2x2(
&TTL, &TTR,
&TBL, &TBR, T, 0, 0, pTOPLEFT)
partition2x1(
&tT,
&tB, tau, 0, pTOP)
for ABR.Rows() > 0 && ABR.Cols() > 0 {
repartition2x2to3x3(&ATL,
&A00, nil, nil,
&a10, &a11, nil,
&A20, &a21, &A22, A, 1, pBOTTOMRIGHT)
repartition2x2to3x3(&TTL,
&T00, &t01, &T02,
nil, &t11, &t12,
nil, nil, &T22, T, 1, pBOTTOMRIGHT)
repartition2x1to3x1(&tT,
&t0,
&tau1,
&t2, tau, 1, pBOTTOM)
// --------------------------------------------------
// t11 := tau
tauval := tau1.GetAt(0, 0)
if tauval != 0.0 {
t11.SetAt(0, 0, tauval)
// t01 := a10.T + &A20.T*a21
a10.CopyTo(&t01)
MVMult(&t01, &A20, &a21, -tauval, -tauval, TRANSA)
// t01 := T00*t01
MVMultTrm(&t01, &T00, UPPER)
//t01.Scale(-tauval)
}
// --------------------------------------------------
continue3x3to2x2(
&ATL, &ATR,
&ABL, &ABR, &A00, &a11, &A22, A, pBOTTOMRIGHT)
continue3x3to2x2(
&TTL, &TTR,
&TBL, &TBR, &T00, &t11, &T22, T, pBOTTOMRIGHT)
continue3x1to2x1(
&tT,
&tB, &t0, &tau1, tau, pBOTTOM)
}
}
示例5: TriLU
// Make A tridiagonal, lower, unit matrix by clearing the strictly upper part
// of the matrix and setting diagonal elements to one.
func TriLU(A *matrix.FloatMatrix) *matrix.FloatMatrix {
var Ac matrix.FloatMatrix
mlen := imin(A.Rows(), A.Cols())
A.SetAt(0, 0, 1.0)
for k := 1; k < mlen; k++ {
A.SetAt(k, k, 1.0)
Ac.SubMatrixOf(A, 0, k, k, 1)
Ac.SetIndexes(0.0)
}
if A.Cols() > A.Rows() {
Ac.SubMatrixOf(A, 0, A.Rows())
Ac.SetIndexes(0.0)
}
return A
}
示例6: TriUU
// Make A tridiagonal, upper, unit matrix by clearing the strictly lower part
// of the matrix and setting diagonal elements to one.
func TriUU(A *matrix.FloatMatrix) *matrix.FloatMatrix {
var Ac matrix.FloatMatrix
var k int
mlen := imin(A.Rows(), A.Cols())
for k = 0; k < mlen; k++ {
Ac.SubMatrixOf(A, k+1, k, A.Rows()-k-1, 1)
Ac.SetIndexes(0.0)
A.SetAt(k, k, 1.0)
}
// last element on diagonal
A.SetAt(k, k, 1.0)
if A.Cols() < A.Rows() {
Ac.SubMatrixOf(A, A.Cols(), 0)
Ac.SetIndexes(0.0)
}
return A
}
示例7: computeHouseholder
/* From LAPACK/dlarfg.f
*
* DLARFG generates a real elementary reflector H of order n, such
* that
*
* H * ( alpha ) = ( beta ), H**T * H = I.
* ( x ) ( 0 )
*
* where alpha and beta are scalars, and x is an (n-1)-element real
* vector. H is represented in the form
*
* H = I - tau * ( 1 ) * ( 1 v**T ) ,
* ( v )
*
* where tau is a real scalar and v is a real (n-1)-element
* vector.
*
* If the elements of x are all zero, then tau = 0 and H is taken to be
* the unit matrix.
*
* Otherwise 1 <= tau <= 2.
*/
func computeHouseholder(a11, x, tau *matrix.FloatMatrix, flags Flags) {
// norm_x2 = ||x||_2
norm_x2 := Norm2(x)
if norm_x2 == 0.0 {
//a11.SetAt(0, 0, -a11.GetAt(0, 0))
tau.SetAt(0, 0, 0.0)
return
}
alpha := a11.GetAt(0, 0)
sign := 1.0
if math.Signbit(alpha) {
sign = -1.0
}
// beta = -(alpha / |alpha|) * ||alpha x||
// = -sign(alpha) * sqrt(alpha**2, norm_x2**2)
beta := -sign * sqrtX2Y2(alpha, norm_x2)
// x = x /(a11 - beta)
InvScale(x, alpha-beta)
tau.SetAt(0, 0, (beta-alpha)/beta)
a11.SetAt(0, 0, beta)
}
示例8: unblockedCHOL
func unblockedCHOL(A *matrix.FloatMatrix, flags Flags, nr int) (err error) {
var ATL, ATR, ABL, ABR matrix.FloatMatrix
var A00, a01, A02, a10, a11, a12, A20, a21, A22 matrix.FloatMatrix
err = nil
partition2x2(
&ATL, &ATR,
&ABL, &ABR, A, 0, 0, pTOPLEFT)
for ATL.Rows() < A.Rows() {
repartition2x2to3x3(&ATL,
&A00, &a01, &A02,
&a10, &a11, &a12,
&A20, &a21, &A22, A, 1, pBOTTOMRIGHT)
// a11 = sqrt(a11)
aval := math.Sqrt(a11.Float())
if math.IsNaN(aval) {
panic(fmt.Sprintf("illegal value at %d: %e", nr+ATL.Rows(), a11.Float()))
}
a11.SetAt(0, 0, aval)
if flags&LOWER != 0 {
// a21 = a21/a11
InvScale(&a21, a11.Float())
// A22 = A22 - a21*a21' (SYR)
err = MVRankUpdateSym(&A22, &a21, -1.0, flags)
} else {
// a21 = a12/a11
InvScale(&a12, a11.Float())
// A22 = A22 - a12'*a12 (SYR)
err = MVRankUpdateSym(&A22, &a12, -1.0, flags)
}
continue3x3to2x2(
&ATL, &ATR,
&ABL, &ABR, &A00, &a11, &A22, A, pBOTTOMRIGHT)
}
return
}
示例9: applyBKPivotSym
/*
* Apply diagonal pivot (row and column swapped) to symmetric matrix blocks.
*
* LOWER triangular; moving from top-left to bottom-right
*
* -----------------------
* | d
* | x P1 x x x P2 -- current row/col 'srcix'
* | x S2 d x x x
* | x S2 x d x x
* | x S2 x x d x
* | x P2 D2 D2 D2 P3 -- swap with row/col 'dstix'
* | x S3 x x x D3 d
* | x S3 x x x D3 x d
* (AR)
*
* UPPER triangular; moving from bottom-right to top-left
*
* d x D3 x x x S3 x |
* d D3 x x x S3 x |
* P3 D2 D2 D2 P2 x | -- dstinx
* d x x S2 x |
* d x S2 x |
* d S2 x |
* P1 x | -- srcinx
* d |
* ----------------------
* (ABR)
*/
func applyBKPivotSym(AR *matrix.FloatMatrix, srcix, dstix int, flags Flags) {
var s, d matrix.FloatMatrix
if flags&LOWER != 0 {
// S2 -- D2
AR.SubMatrix(&s, srcix+1, srcix, dstix-srcix-1, 1)
AR.SubMatrix(&d, dstix, srcix+1, 1, dstix-srcix-1)
Swap(&s, &d)
// S3 -- D3
AR.SubMatrix(&s, dstix+1, srcix, AR.Rows()-dstix-1, 1)
AR.SubMatrix(&d, dstix+1, dstix, AR.Rows()-dstix-1, 1)
Swap(&s, &d)
// swap P1 and P3
p1 := AR.GetAt(srcix, srcix)
p3 := AR.GetAt(dstix, dstix)
AR.SetAt(srcix, srcix, p3)
AR.SetAt(dstix, dstix, p1)
return
}
if flags&UPPER != 0 {
// AL is ATL, AR is ATR; P1 is AL[srcix, srcix];
// S2 -- D2
AR.SubMatrix(&s, dstix+1, srcix, srcix-dstix-1, 1)
AR.SubMatrix(&d, dstix, dstix+1, 1, srcix-dstix-1)
Swap(&s, &d)
// S3 -- D3
AR.SubMatrix(&s, 0, srcix, dstix, 1)
AR.SubMatrix(&d, 0, dstix, dstix, 1)
Swap(&s, &d)
//fmt.Printf("3, AR=%v\n", AR)
// swap P1 and P3
p1 := AR.GetAt(srcix, srcix)
p3 := AR.GetAt(dstix, dstix)
AR.SetAt(srcix, srcix, p3)
AR.SetAt(dstix, dstix, p1)
return
}
}
示例10: applyPivotSym
/*
* Apply diagonal pivot (row and column swapped) to symmetric matrix blocks.
* AR[0,0] is on diagonal and AL is block to the left of diagonal and AR the
* triangular diagonal block. Need to swap row and column.
*
* LOWER triangular; moving from top-left to bottom-right
*
* d
* x d
* x x d |
* --------------------------
* S1 S1 S1 | P1 x x x P2 -- current row
* x x x | S2 d x x x
* x x x | S2 x d x x
* x x x | S2 x x d x
* D1 D1 D1 | P2 D2 D2 D2 P3 -- swap with row 'index'
* x x x | S3 x x x D3 d
* x x x | S3 x x x D3 x d
* (ABL) (ABR)
*
* UPPER triangular; moving from bottom-right to top-left
*
* (ATL) (ATR)
* d x x D3 x x x | S3 x x
* d x D3 x x x | S3 x x
* d D3 x x x | S3 x x
* P3 D2 D2 D2| P2 D1 D1
* d x x | S2 x x
* d x | S2 x x
* d | S2 x x
* -----------------------------
* | P1 S1 S1
* | d x
* | d
* (ABR)
*/
func applyPivotSym(AL, AR *matrix.FloatMatrix, index int, flags Flags) {
var s, d matrix.FloatMatrix
if flags&LOWER != 0 {
// AL is [ABL]; AR is [ABR]; P1 is AR[0,0], P2 is AR[index, 0]
// S1 -- D1
AL.SubMatrix(&s, 0, 0, 1, AL.Cols())
AL.SubMatrix(&d, index, 0, 1, AL.Cols())
Swap(&s, &d)
// S2 -- D2
AR.SubMatrix(&s, 1, 0, index-1, 1)
AR.SubMatrix(&d, index, 1, 1, index-1)
Swap(&s, &d)
// S3 -- D3
AR.SubMatrix(&s, index+1, 0, AR.Rows()-index-1, 1)
AR.SubMatrix(&d, index+1, index, AR.Rows()-index-1, 1)
Swap(&s, &d)
// swap P1 and P3
p1 := AR.GetAt(0, 0)
p3 := AR.GetAt(index, index)
AR.SetAt(0, 0, p3)
AR.SetAt(index, index, p1)
return
}
if flags&UPPER != 0 {
// AL is merged from [ATL, ATR], AR is [ABR]; P1 is AR[0, 0]; P2 is AL[index, -1]
colno := AL.Cols() - AR.Cols()
// S1 -- D1; S1 is on the first row of AR
AR.SubMatrix(&s, 0, 1, 1, AR.Cols()-1)
AL.SubMatrix(&d, index, colno+1, 1, s.Cols())
Swap(&s, &d)
// S2 -- D2
AL.SubMatrix(&s, index+1, colno, AL.Rows()-index-2, 1)
AL.SubMatrix(&d, index, index+1, 1, colno-index-1)
Swap(&s, &d)
// S3 -- D3
AL.SubMatrix(&s, 0, index, index, 1)
AL.SubMatrix(&d, 0, colno, index, 1)
Swap(&s, &d)
//fmt.Printf("3, AR=%v\n", AR)
// swap P1 and P3
p1 := AR.GetAt(0, 0)
p3 := AL.GetAt(index, index)
AR.SetAt(0, 0, p3)
AL.SetAt(index, index, p1)
return
}
}
示例11: applyPivotSym2
/*
* Apply diagonal pivot (row and column swapped) to symmetric matrix blocks.
* AR[0,0] is on diagonal and AL is block to the left of diagonal and AR the
* triangular diagonal block. Need to swap row and column.
*
* LOWER triangular; moving from top-left to bottom-right
*
* d
* x d |
* --------------------------
* x x | d
* S1 S1| S1 P1 x x x P2 -- current row/col 'srcix'
* x x | x S2 d x x x
* x x | x S2 x d x x
* x x | x S2 x x d x
* D1 D1| D1 P2 D2 D2 D2 P3 -- swap with row/col 'dstix'
* x x | x S3 x x x D3 d
* x x | x S3 x x x D3 x d
* (ABL) (ABR)
*
* UPPER triangular; moving from bottom-right to top-left
*
* (ATL) (ATR)
* d x x D3 x x x S3 x | x
* d x D3 x x x S3 x | x
* d D3 x x x S3 x | x
* P3 D2 D2 D2 P2 D1| D1 -- dstinx
* d x x S2 x | x
* d x S2 x | x
* d S2 x | x
* P1 S1| S1 -- srcinx
* d | x
* -----------------------------
* | d
* (ABR)
*/
func applyPivotSym2(AL, AR *matrix.FloatMatrix, srcix, dstix int, flags Flags) {
var s, d matrix.FloatMatrix
if flags&LOWER != 0 {
// AL is [ABL]; AR is [ABR]; P1 is AR[0,0], P2 is AR[index, 0]
// S1 -- D1
AL.SubMatrix(&s, srcix, 0, 1, AL.Cols())
AL.SubMatrix(&d, dstix, 0, 1, AL.Cols())
Swap(&s, &d)
if srcix > 0 {
AR.SubMatrix(&s, srcix, 0, 1, srcix)
AR.SubMatrix(&d, dstix, 0, 1, srcix)
Swap(&s, &d)
}
// S2 -- D2
AR.SubMatrix(&s, srcix+1, srcix, dstix-srcix-1, 1)
AR.SubMatrix(&d, dstix, srcix+1, 1, dstix-srcix-1)
Swap(&s, &d)
// S3 -- D3
AR.SubMatrix(&s, dstix+1, srcix, AR.Rows()-dstix-1, 1)
AR.SubMatrix(&d, dstix+1, dstix, AR.Rows()-dstix-1, 1)
Swap(&s, &d)
// swap P1 and P3
p1 := AR.GetAt(srcix, srcix)
p3 := AR.GetAt(dstix, dstix)
AR.SetAt(srcix, srcix, p3)
AR.SetAt(dstix, dstix, p1)
return
}
if flags&UPPER != 0 {
// AL is ATL, AR is ATR; P1 is AL[srcix, srcix];
// S1 -- D1;
AR.SubMatrix(&s, srcix, 0, 1, AR.Cols())
AR.SubMatrix(&d, dstix, 0, 1, AR.Cols())
Swap(&s, &d)
if srcix < AL.Cols()-1 {
// not the corner element
AL.SubMatrix(&s, srcix, srcix+1, 1, srcix)
AL.SubMatrix(&d, dstix, srcix+1, 1, srcix)
Swap(&s, &d)
}
// S2 -- D2
AL.SubMatrix(&s, dstix+1, srcix, srcix-dstix-1, 1)
AL.SubMatrix(&d, dstix, dstix+1, 1, srcix-dstix-1)
Swap(&s, &d)
// S3 -- D3
AL.SubMatrix(&s, 0, srcix, dstix, 1)
AL.SubMatrix(&d, 0, dstix, dstix, 1)
Swap(&s, &d)
//fmt.Printf("3, AR=%v\n", AR)
// swap P1 and P3
p1 := AR.GetAt(0, 0)
p3 := AL.GetAt(dstix, dstix)
AR.SetAt(srcix, srcix, p3)
AL.SetAt(dstix, dstix, p1)
return
}
}
示例12: findAndBuildPivot
func findAndBuildPivot(AL, AR, WL, WR *matrix.FloatMatrix, k int) int {
var dg, acol, wcol, wrow matrix.FloatMatrix
// updated diagonal values on last column of workspace
WR.SubMatrix(&dg, 0, WR.Cols()-1, AR.Rows(), 1)
// find on-diagonal maximun value
dmax := IAMax(&dg)
//fmt.Printf("dmax=%d, val=%e\n", dmax, dg.GetAt(dmax, 0))
// copy to first column of WR and update with factorized columns
WR.SubMatrix(&wcol, 0, 0, WR.Rows(), 1)
if dmax == 0 {
AR.SubMatrix(&acol, 0, 0, AR.Rows(), 1)
acol.CopyTo(&wcol)
} else {
AR.SubMatrix(&acol, dmax, 0, 1, dmax+1)
acol.CopyTo(&wcol)
if dmax < AR.Rows()-1 {
var wrst matrix.FloatMatrix
WR.SubMatrix(&wrst, dmax, 0, wcol.Rows()-dmax, 1)
AR.SubMatrix(&acol, dmax, dmax, AR.Rows()-dmax, 1)
acol.CopyTo(&wrst)
}
}
if k > 0 {
WL.SubMatrix(&wrow, dmax, 0, 1, WL.Cols())
//fmt.Printf("update with wrow:%v\n", &wrow)
//fmt.Printf("update wcol\n%v\n", &wcol)
MVMult(&wcol, AL, &wrow, -1.0, 1.0, NOTRANS)
//fmt.Printf("updated wcol:\n%v\n", &wcol)
}
if dmax > 0 {
// pivot column in workspace
t0 := WR.GetAt(0, 0)
WR.SetAt(0, 0, WR.GetAt(dmax, 0))
WR.SetAt(dmax, 0, t0)
// pivot on diagonal
t0 = dg.GetAt(0, 0)
dg.SetAt(0, 0, dg.GetAt(dmax, 0))
dg.SetAt(dmax, 0, t0)
}
return dmax
}
示例13: unblkBoundedBKLower
/*
* Unblocked, bounded Bunch-Kauffman LDL factorization for at most ncol columns.
* At most ncol columns are factorized and trailing matrix updates are restricted
* to ncol columns. Also original columns are accumulated to working matrix, which
* is used by calling blocked algorithm to update the trailing matrix with BLAS3
* update.
*
* Corresponds lapack.DLASYF
*/
func unblkBoundedBKLower(A, wrk *matrix.FloatMatrix, p *pPivots, ncol int) (error, int) {
var err error
var ATL, ATR, ABL, ABR matrix.FloatMatrix
var A00, a10t, a11, A20, a21, A22, a11inv matrix.FloatMatrix
var w00, w10, w11 matrix.FloatMatrix
var cwrk matrix.FloatMatrix
//var s, d matrix.FloatMatrix
var pT, pB, p0, p1, p2 pPivots
err = nil
nc := 0
if ncol > A.Cols() {
ncol = A.Cols()
}
partition2x2(
&ATL, &ATR,
&ABL, &ABR, A, 0, 0, pTOPLEFT)
partitionPivot2x1(
&pT,
&pB, p, 0, pTOP)
// permanent working space for symmetric inverse of a11
wrk.SubMatrix(&a11inv, 0, wrk.Cols()-2, 2, 2)
a11inv.SetAt(1, 0, -1.0)
a11inv.SetAt(0, 1, -1.0)
for ABR.Cols() > 0 && nc < ncol {
partition2x2(
&w00, nil,
&w10, &w11, wrk, nc, nc, pTOPLEFT)
//fmt.Printf("ABR:\n%v\n", &ABR)
r, np := findAndBuildBKPivotLower(&ABL, &ABR, &w10, &w11, nc)
//fmt.Printf("after find: r=%d, np=%d, ncol=%d, nc=%d\n", r, np, ncol, nc)
if np > ncol-nc {
// next pivot does not fit into ncol columns, restore last column,
// return with number of factorized columns
//fmt.Printf("np > ncol-nc: %d > %d\n", np, ncol-nc)
return err, nc
//goto undo
}
if r != 0 && r != np-1 {
// pivoting needed; do swaping here
applyBKPivotSym(&ABR, np-1, r, LOWER)
// swap left hand rows to get correct updates
swapRows(&ABL, np-1, r)
swapRows(&w10, np-1, r)
//ABL.SubMatrix(&s, np-1, 0, 1, ABL.Cols())
//ABL.SubMatrix(&d, r, 0, 1, ABL.Cols())
//Swap(&s, &d)
//w10.SubMatrix(&s, np-1, 0, 1, w10.Cols())
//w10.SubMatrix(&d, r, 0, 1, w10.Cols())
//Swap(&s, &d)
if np == 2 {
/*
* [0,0] | [r,0]
* a11 == ------------- 2-by-2 pivot, swapping [1,0] and [r,0]
* [r,0] | [r,r]
*/
t0 := w11.GetAt(1, 0)
tr := w11.GetAt(r, 0)
//fmt.Printf("nc=%d, t0=%e, tr=%e\n", nc, t0, tr)
w11.SetAt(1, 0, tr)
w11.SetAt(r, 0, t0)
// interchange diagonal entries on w11[:,1]
t0 = w11.GetAt(1, 1)
tr = w11.GetAt(r, 1)
w11.SetAt(1, 1, tr)
w11.SetAt(r, 1, t0)
}
//fmt.Printf("pivoted A:\n%v\n", A)
//fmt.Printf("pivoted wrk:\n%v\n", wrk)
}
// repartition according the pivot size
repartition2x2to3x3(&ATL,
&A00, nil, nil,
&a10t, &a11, nil,
&A20, &a21, &A22 /**/, A, np, pBOTTOMRIGHT)
repartPivot2x1to3x1(&pT,
&p0,
&p1,
&p2 /**/, p, np, pBOTTOM)
// ------------------------------------------------------------
if np == 1 {
//
w11.SubMatrix(&cwrk, np, 0, a21.Rows(), np)
a11.SetAt(0, 0, w11.GetAt(0, 0))
//.........這裏部分代碼省略.........
示例14: findAndBuildBKPivotLower
/*
* Find diagonal pivot and build incrementaly updated block.
*
* (AL) (AR) (WL) (WR)
* -------------------------- ---------- k'th row in W
* x x | c1 w w | k kp1
* x x | c1 d w w | k kp1
* x x | c1 x d w w | k kp1
* x x | c1 x x d w w | k kp1
* x x | c1 r2 r2 r2 r2 w w | k kp1
* x x | c1 x x x r2 d w w | k kp1
* x x | c1 x x x r2 x d w w | k kp1
*
* Matrix AR contains the unfactored part of the matrix and AL the already
* factored columns. Matrix WL is updated values of factored part ie.
* w(i) = l(i)d(i). Matrix WR will have updated values for next column.
* Column WR(k) contains updated AR(c1) and WR(kp1) possible pivot row AR(r2).
*
*
*/
func findAndBuildBKPivotLower(AL, AR, WL, WR *matrix.FloatMatrix, k int) (int, int) {
var r, q int
var rcol, qrow, src, wk, wkp1, wrow matrix.FloatMatrix
// Copy AR column 0 to WR column 0 and update with WL[0:]
AR.SubMatrix(&src, 0, 0, AR.Rows(), 1)
WR.SubMatrix(&wk, 0, 0, AR.Rows(), 1)
src.CopyTo(&wk)
if k > 0 {
WL.SubMatrix(&wrow, 0, 0, 1, WL.Cols())
MVMult(&wk, AL, &wrow, -1.0, 1.0, NOTRANS)
//fmt.Printf("wk after update:\n%v\n", &wk)
}
if AR.Rows() == 1 {
return 0, 1
}
amax := math.Abs(WR.GetAt(0, 0))
// find max off-diagonal on first column.
WR.SubMatrix(&rcol, 1, 0, AR.Rows()-1, 1)
//fmt.Printf("rcol:\n%v\n", &rcol)
// r is row index and rmax is its absolute value
r = IAMax(&rcol) + 1
rmax := math.Abs(rcol.GetAt(r-1, 0))
//fmt.Printf("r=%d, amax=%e, rmax=%e\n", r, amax, rmax)
if amax >= bkALPHA*rmax {
// no pivoting, 1x1 diagonal
return 0, 1
}
// Now we need to copy row r to WR[:,1] and update it
WR.SubMatrix(&wkp1, 0, 1, AR.Rows(), 1)
AR.SubMatrix(&qrow, r, 0, 1, r+1)
qrow.CopyTo(&wkp1)
//fmt.Printf("m(AR)=%d, r=%d, qrow: %v\n", AR.Rows(), r, &qrow)
if r < AR.Rows()-1 {
var wkr matrix.FloatMatrix
AR.SubMatrix(&qrow, r, r, AR.Rows()-r, 1)
wkp1.SubMatrix(&wkr, r, 0, wkp1.Rows()-r, 1)
qrow.CopyTo(&wkr)
//fmt.Printf("m(AR)=%d, r=%d, qrow: %v\n", AR.Rows(), r, &qrow)
}
if k > 0 {
// update wkp1
WL.SubMatrix(&wrow, r, 0, 1, WL.Cols())
//fmt.Printf("initial wpk1:\n%v\n", &wkp1)
MVMult(&wkp1, AL, &wrow, -1.0, 1.0, NOTRANS)
//fmt.Printf("updated wpk1:\n%v\n", &wkp1)
}
// set on-diagonal entry to zero to avoid finding it
p1 := wkp1.GetAt(r, 0)
wkp1.SetAt(r, 0, 0.0)
// max off-diagonal on r'th column/row at index q
q = IAMax(&wkp1)
qmax := math.Abs(wkp1.GetAt(q, 0))
// restore on-diagonal entry
wkp1.SetAt(r, 0, p1)
//arr := math.Abs(WR.GetAt(r, 1))
//fmt.Printf("blk: r=%d, q=%d, amax=%e, rmax=%e, qmax=%e, Arr=%e\n", r, q, amax, rmax, qmax, arr)
if amax >= bkALPHA*rmax*(rmax/qmax) {
// no pivoting, 1x1 diagonal
return 0, 1
}
// if q == r then qmax is not off-diagonal, qmax == WR[r,1] and
// we get 1x1 pivot as following is always true
if math.Abs(WR.GetAt(r, 1)) >= bkALPHA*qmax {
// 1x1 pivoting and interchange with k, r
// pivot row in column WR[:,1] to W[:,0]
//pr := WR.GetAt(r, 1)
//_ = pr
WR.SubMatrix(&src, 0, 1, AR.Rows(), 1)
WR.SubMatrix(&wkp1, 0, 0, AR.Rows(), 1)
src.CopyTo(&wkp1)
wkp1.SetAt(0, 0, src.GetAt(r, 0))
wkp1.SetAt(r, 0, src.GetAt(0, 0))
return r, 1
} else {
// 2x2 pivoting and interchange with k+1, r
return r, 2
//.........這裏部分代碼省略.........
示例15: unblkDecompBKUpper
/*
* Unblocked Bunch-Kauffman LDL factorization.
*
* Corresponds lapack.DSYTF2
*/
func unblkDecompBKUpper(A, wrk *matrix.FloatMatrix, p *pPivots) (error, int) {
var err error
var ATL, ATR, ABL, ABR matrix.FloatMatrix
var A00, a01, A02, a12t, a11, A22, a11inv matrix.FloatMatrix
var cwrk matrix.FloatMatrix
var pT, pB, p0, p1, p2 pPivots
err = nil
nc := 0
partition2x2(
&ATL, &ATR,
&ABL, &ABR, A, 0, 0, pBOTTOMRIGHT)
partitionPivot2x1(
&pT,
&pB, p, 0, pBOTTOM)
// permanent working space for symmetric inverse of a11
wrk.SubMatrix(&a11inv, 0, wrk.Cols()-2, 2, 2)
a11inv.SetAt(1, 0, -1.0)
a11inv.SetAt(0, 1, -1.0)
for ATL.Cols() > 0 {
nr := ATL.Rows() - 1
r, np := findBKPivot(&ATL, UPPER)
if r != -1 /*&& r != np-1*/ {
// pivoting needed; do swaping here
//fmt.Printf("pre-pivot ATL [%d]:\n%v\n", ATL.Rows()-np, &ATL)
applyBKPivotSym(&ATL, ATL.Rows()-np, r, UPPER)
if np == 2 {
/*
* [r,r] | [r, nr]
* a11 == --------------- 2-by-2 pivot, swapping [nr-1,nr] and [r,nr]
* [r,0] | [nr,nr]
*/
t := ATL.GetAt(nr-1, nr)
ATL.SetAt(nr-1, nr, ATL.GetAt(r, nr))
ATL.SetAt(r, nr, t)
}
//fmt.Printf("unblk: ATL after %d pivot [r=%d]:\n%v\n", np, r, &ATL)
}
// repartition according the pivot size
repartition2x2to3x3(&ATL,
&A00, &a01, &A02,
nil, &a11, &a12t,
nil, nil, &A22 /**/, A, np, pTOPLEFT)
repartPivot2x1to3x1(&pT,
&p0,
&p1,
&p2 /**/, p, np, pTOP)
// ------------------------------------------------------------
if np == 1 {
// A00 = A00 - a01*a01.T/a11
MVUpdateTrm(&A00, &a01, &a01, -1.0/a11.Float(), UPPER)
// a01 = a01/a11
InvScale(&a01, a11.Float())
if r == -1 {
p1.pivots[0] = ATL.Rows()
} else {
p1.pivots[0] = r + 1
}
} else if np == 2 {
/*
* See comments on unblkDecompBKLower().
*/
a := a11.GetAt(0, 0)
b := a11.GetAt(0, 1)
d := a11.GetAt(1, 1)
a11inv.SetAt(0, 0, d/b)
a11inv.SetAt(1, 1, a/b)
// denominator: (a/b)*(d/b)-1.0 == (a*d - b^2)/b^2
scale := 1.0 / ((a/b)*(d/b) - 1.0)
scale /= b
// cwrk = a21
wrk.SubMatrix(&cwrk, 2, 0, a01.Rows(), a01.Cols())
a01.CopyTo(&cwrk)
//fmt.Printf("cwrk:\n%v\n", &cwrk)
//fmt.Printf("a11inv:\n%v\n", &a11inv)
// a01 = a01*a11.-1
Mult(&a01, &cwrk, &a11inv, scale, 0.0, NOTRANS)
// A00 = A00 - a01*a11.-1*a01.T = A00 - a01*cwrk.T
UpdateTrm(&A00, &a01, &cwrk, -1.0, 1.0, UPPER|TRANSB)
p1.pivots[0] = -(r + 1)
p1.pivots[1] = p1.pivots[0]
}
// ------------------------------------------------------------
nc += np
continue3x3to2x2(
&ATL, &ATR,
//.........這裏部分代碼省略.........