當前位置: 首頁>>代碼示例>>C#>>正文


C# Vector.ToBinary方法代碼示例

本文整理匯總了C#中numl.Math.LinearAlgebra.Vector.ToBinary方法的典型用法代碼示例。如果您正苦於以下問題:C# Vector.ToBinary方法的具體用法?C# Vector.ToBinary怎麽用?C# Vector.ToBinary使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numl.Math.LinearAlgebra.Vector的用法示例。


在下文中一共展示了Vector.ToBinary方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: Generate

        /// <summary>Generate Logistic Regression model based on a set of examples.</summary>
        /// <param name="X">The Matrix to process.</param>
        /// <param name="y">The Vector to process.</param>
        /// <returns>Model.</returns>
        public override IModel Generate(Matrix X, Vector y)
        {
            X = IncreaseDimensions(X, this.PolynomialFeatures);

            this.Preprocess(X);

            // guarantee 1/0 based label vector
            y = y.ToBinary(f => f == 1d, falseValue: 0d);

            // add intercept term
            X = X.Insert(Vector.Ones(X.Rows), 0, VectorType.Col, false);

            Vector theta = Vector.Rand(X.Cols);

            // run gradient descent
            var optimizer = new numl.Math.Optimization.Optimizer(theta, this.MaxIterations, this.LearningRate)
            {
                CostFunction = new numl.Math.Functions.Cost.LogisticCostFunction()
                {
                    X = X,
                    Y = y,
                    Lambda = this.Lambda,
                    Regularizer = new numl.Math.Functions.Regularization.L2Regularizer(),
                    LogisticFunction = this.LogisticFunction
                }
            };

            optimizer.Run();

            LogisticRegressionModel model = new LogisticRegressionModel()
            {
                Descriptor = this.Descriptor,
                NormalizeFeatures = base.NormalizeFeatures,
                FeatureNormalizer = base.FeatureNormalizer,
                FeatureProperties = base.FeatureProperties,
                Theta = optimizer.Properties.Theta,
                LogisticFunction = this.LogisticFunction,
                PolynomialFeatures = this.PolynomialFeatures
            };

            return model;
        }
開發者ID:sethjuarez,項目名稱:numl,代碼行數:46,代碼來源:LogisticRegressionGenerator.cs

示例2: Generate

        /// <summary>Generates a SVM model based on a set of examples.</summary>
        /// <param name="X">The Matrix to process.</param>
        /// <param name="y">The Vector to process.</param>
        /// <returns>Model.</returns>
        public override IModel Generate(Matrix X, Vector y)
        {
            this.Preprocess(X);

            // expect truth = 1 and false = -1
            y = y.ToBinary(k => k == 1d, falseValue: -1.0);

            // initialise variables
            int m = X.Rows, n = X.Cols, i = -1, j = -1, changes = 0, iterations = 0;
            double lagLow = 0.0, lagHigh = 0.0, cost = 0.0, tempAI = 0d, tempAJ = 0d;

            Vector gradient = Vector.Zeros(m), alpha = Vector.Zeros(m);

            // precompute kernal matrix (using similarity function)
            Matrix K = this.KernelFunction.Compute(X);

            // synchronise SVM parameters with working set selection function.
            this.SelectionFunction.Bias = this.Bias; this.SelectionFunction.C = this.C; this.SelectionFunction.Epsilon = this.Epsilon;
            this.SelectionFunction.K = K; this.SelectionFunction.Y = y;

            bool finalise = false;

            this.SelectionFunction.Initialize(alpha, gradient);

            while (finalise == false && iterations < this.MaxIterations)
            {
                changes = 0;

                #region Training

                for (int p = 0; p < m; p++)
                {
                    // get new working set selection using heuristic function
                    Tuple<int, int> newPair = this.SelectionFunction.GetWorkingSet(i, j, gradient, alpha);

                    // check for valid i, j pairs
                    if (newPair.Item1 >= 0 && newPair.Item2 >= 0 && newPair.Item1 != newPair.Item2)
                    {
                        i = newPair.Item1; j = newPair.Item2;
                        // compute new gradients
                        gradient[i] = Bias + (alpha * y * K[i, VectorType.Col]).Sum() - y[i];

                        if ((y[i] * gradient[i] < -this.Epsilon && alpha[i] < this.C) || (y[i] * gradient[i] > this.Epsilon && alpha[i] > 0))
                        {
                            gradient[j] = Bias + (alpha * y * K[j, VectorType.Col]).Sum() - y[j];

                            // store temp working copies of alpha from both pairs (i, j)
                            tempAI = alpha[i]; tempAJ = alpha[j];

                            // update lower and upper bounds of lagrange multipliers
                            if (y[i] == y[j])
                            {
                                // pairs are same class don't apply large margin
                                lagLow = System.Math.Max(0.0, alpha[j] + alpha[i] - this.C);
                                lagHigh = System.Math.Min(this.C, alpha[j] + alpha[i]);
                            }
                            else
                            {
                                // pairs are not same class, apply large margin
                                lagLow = System.Math.Max(0.0, alpha[j] - alpha[i]);
                                lagHigh = System.Math.Min(this.C, this.C + alpha[j] - alpha[i]);
                            }

                            // if lagrange constraints are not diverse then get new working set
                            if (lagLow == lagHigh) continue;

                            // compute cost and if it's greater than 0 skip
                            // cost should optimise large margin where fit line intercepts <= 0
                            cost = 2.0 * K[i, j] - K[i, i] - K[j, j];
                            if (cost >= 0.0) continue;
                            else
                            {
                                // update alpha of (j) w.r.t to the relative cost difference of the i-th and j-th gradient
                                alpha[j] = alpha[j] - (y[j] * (gradient[i] - gradient[j])) / cost;

                                // clip alpha with lagrange multipliers
                                alpha[j] = System.Math.Min(lagHigh, alpha[j]);
                                alpha[j] = System.Math.Max(lagLow, alpha[j]);

                                // check alpha tolerance factor
                                if (System.Math.Abs(alpha[j] - tempAJ) < this.Epsilon)
                                {
                                    // we're optimising large margins so skip small ones
                                    alpha[j] = tempAJ; continue;
                                }

                                // update alpha of i if we have a large margin w.r.t to alpha (j)
                                alpha[i] = alpha[i] + y[i] * y[j] * (tempAJ - alpha[j]);

                                // precompute i, j into feasible region for Bias
                                double yBeta = (alpha[i] - tempAI) * K[i, j] - y[j] * (alpha[j] - tempAJ);
                                // store temp beta with gradient for i, j pairs
                                double beta_i = this.Bias - gradient[i] - y[i] * yBeta * K[i, j];
                                double beta_j = this.Bias - gradient[j] - y[i] * yBeta * K[j, j];

                                // update new bias with constrained alpha limits (0 < alpha < C)
//.........這裏部分代碼省略.........
開發者ID:sethjuarez,項目名稱:numl,代碼行數:101,代碼來源:SVMGenerator.cs


注:本文中的numl.Math.LinearAlgebra.Vector.ToBinary方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。