當前位置: 首頁>>代碼示例>>C#>>正文


C# Vector.Slice方法代碼示例

本文整理匯總了C#中numl.Math.LinearAlgebra.Vector.Slice方法的典型用法代碼示例。如果您正苦於以下問題:C# Vector.Slice方法的具體用法?C# Vector.Slice怎麽用?C# Vector.Slice使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numl.Math.LinearAlgebra.Vector的用法示例。


在下文中一共展示了Vector.Slice方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: ComputeGradient

        /// <summary>
        /// Compute the error cost of the given Theta parameter for the training and label sets
        /// </summary>
        /// <param name="theta">Learning Theta parameters</param>
        /// <returns></returns>
        public override Vector ComputeGradient(Vector theta)
        {
            Matrix ThetaX = theta.Slice(0, (R.Rows * CollaborativeFeatures) - 1).Reshape(CollaborativeFeatures, VectorType.Col);
            Matrix ThetaY = theta.Slice((R.Rows * CollaborativeFeatures), theta.Length - 1).Reshape(CollaborativeFeatures, VectorType.Col);

            Matrix A = ((ThetaY * ThetaX.T).T - YReformed);
            Matrix S = A.Each(R, (i, j) => i * j);

            Matrix gradX = (S * ThetaY) + (Lambda * ThetaX);
            Matrix gradTheta = (S.T * ThetaX) + (Lambda * ThetaY);

            return Vector.Combine(gradX.Unshape(), gradTheta.Unshape());
        }
開發者ID:sethjuarez,項目名稱:numl,代碼行數:18,代碼來源:CofiCostFunction.cs

示例2: ComputeCost

        /// <summary>
        /// Compute the error cost of the given Theta parameter for the training and label sets
        /// </summary>
        /// <param name="theta">Learning Theta parameters</param>
        /// <returns></returns>
        public override double ComputeCost(Vector theta)
        {
            double j = 0.0;

            Matrix ThetaX = theta.Slice(0, (R.Rows * CollaborativeFeatures) - 1).Reshape(CollaborativeFeatures, VectorType.Col);
            Matrix ThetaY = theta.Slice((R.Rows * CollaborativeFeatures), theta.Length - 1).Reshape(CollaborativeFeatures, VectorType.Col);

            j = (1.0 / 2.0) * ((ThetaY * ThetaX.T).T - YReformed).Each(i => System.Math.Pow(i, 2.0)).Each((v, r, c) => v * R[r, c]).Sum();

            if (Lambda != 0)
            {
                j = j + ((Lambda / 2.0) * (ThetaY.Each(i => System.Math.Pow(i, 2.0)).Sum()) + (Lambda / 2.0 * ThetaX.Each(i => System.Math.Pow(i, 2.0)).Sum()));
            }
            return j;
        }
開發者ID:sethjuarez,項目名稱:numl,代碼行數:20,代碼來源:CofiCostFunction.cs

示例3: Test_Vector_Slicing_With_Indices

 public void Test_Vector_Slicing_With_Indices(IEnumerable<double> source, IEnumerable<int> indices, IEnumerable<double> truth)
 {
     var x = new Vector(source);
     var t = new Vector(truth);
     var slice = x.Slice(indices);
     Assert.AreEqual(t, slice);
 }
開發者ID:m-abubakar,項目名稱:numl,代碼行數:7,代碼來源:HelperTests.cs

示例4: SegmentedConditional

        /// <summary>
        /// Calculates segmented conditional impurity of y | x When stipulating ranges (r), X is broken
        /// up into
        /// |r| many segments therefore P(X=x_r) becomes a range probability
        /// rather than a fixed probability. In essence the average over H(Y|X = x) becomes SUM_s [ p_r *
        /// H(Y|X = x_r) ]. The values that were used to do the split are stored in the Splits member.
        /// </summary>
        /// <exception cref="InvalidOperationException">Thrown when the requested operation is invalid.</exception>
        /// <param name="y">Target impurity.</param>
        /// <param name="x">Conditioned impurity.</param>
        /// <param name="ranges">Number of segments over x to condition upon.</param>
        /// <returns>Segmented conditional impurity measure.</returns>
        public double SegmentedConditional(Vector y, Vector x, IEnumerable<Range> ranges)
        {
            if (x == null && y == null)
                throw new InvalidOperationException("x and y do not exist!");

            double p = 0,               // probability of slice
                   h = 0,               // impurity of y | x_i : ith slice
                   result = 0,          // aggregated sum
                   count = x.Count();   // total items in list

            Segments = ranges.OrderBy(r => r.Min).ToArray();
            Discrete = false;

            // for each range calculate
            // conditional impurity and
            // aggregate results
            foreach (Range range in Segments)
            {
                // get slice
                var s = x.Indices(d => d >= range.Min && d < range.Max);
                // slice probability
                p = (double)s.Count() / (double)count;
                // impurity of (y | x_i)
                h = Calculate(y.Slice(s));
                // sum up
                result += p * h;
            }

            return result;
        }
開發者ID:m-abubakar,項目名稱:numl,代碼行數:42,代碼來源:Impurity.cs

示例5: Conditional

        /// <summary>
        /// Calculates conditional impurity of y | x
        /// R(Y|X) is the average of H(Y|X = x) over all possible values
        /// X may take. 
        /// </summary>
        /// <param name="y">Target impurity</param>
        /// <param name="x">Conditioned impurity</param>
        /// <param name="width">Split of values over x to condition upon</param>
        /// <returns>Conditional impurity measure</returns>
        public double Conditional(Vector y, Vector x)
        {
            if (x == null && y == null)
                throw new InvalidOperationException("x and y do not exist!");

            double p = 0,               // probability of slice
                   h = 0,               // impurity of y | x_i : ith slice
                   result = 0,          // aggregated sum
                   count = x.Count();   // total items in list

            var values = x.Distinct().OrderBy(z => z);  // distinct values to split on

            Segments = values.Select(z => Range.Make(z, z)).ToArray();
            Discrete = true;

            // for each distinct value
            // calculate conditional impurity
            // and aggregate results
            foreach (var i in values)
            {
                // get slice
                var s = x.Indices(d => d == i);
                // slice probability
                p = (double)s.Count() / (double)count;
                // impurity of (y | x_i)
                h = Calculate(y.Slice(s));
                // sum up
                result += p * h;
            }

            return result;
        }
開發者ID:budbjames,項目名稱:numl,代碼行數:41,代碼來源:Impurity.cs

示例6: Generate

        /// <summary>Generate model based on a set of examples.</summary>
        /// <param name="X">The Matrix to process.</param>
        /// <param name="y">The Vector to process.</param>
        /// <returns>Model.</returns>
        public override IModel Generate(Matrix X, Vector y)
        {
            this.Preprocess(X);

            int N = y.Length;
            Vector a = Vector.Zeros(N);

            // compute kernel
            Matrix K = Kernel.Compute(X);

            int n = 1;

            // hopefully enough to converge right? ;)
            // need to be smarter about storing SPD kernels...
            bool found_error = true;
            while (n < 500 && found_error)
            {
                found_error = false;
                for (int i = 0; i < N; i++)
                {
                    found_error = y[i] * a.Dot(K[i]) <= 0;
                    if (found_error) a[i] += y[i];
                }

                n++;
            }

            // anything that *matters*
            // i.e. support vectors
            var indices = a.Indices(d => d != 0);

            // slice up examples to contain
            // only support vectors
            return new KernelPerceptronModel
            {
                Kernel = Kernel,
                A = a.Slice(indices),
                Y = y.Slice(indices),
                X = X.Slice(indices),
                Descriptor = this.Descriptor,
                NormalizeFeatures = base.NormalizeFeatures,
                FeatureNormalizer = base.FeatureNormalizer,
                FeatureProperties = base.FeatureProperties
            };
        }
開發者ID:sethjuarez,項目名稱:numl,代碼行數:49,代碼來源:KernelPerceptronGenerator.cs

示例7: BuildTree

        /// <summary>Builds a tree.</summary>
        /// <param name="x">The Matrix to process.</param>
        /// <param name="y">The Vector to process.</param>
        /// <param name="depth">The depth.</param>
        /// <param name="used">The used.</param>
        /// <returns>A Node.</returns>
        private Node BuildTree(Matrix x, Vector y, int depth, List<int> used, Tree tree)
        {
            if (depth < 0)
                return BuildLeafNode(y.Mode());

            var tuple = GetBestSplit(x, y, used);
            var col = tuple.Item1;
            var gain = tuple.Item2;
            var measure = tuple.Item3;

            // uh oh, need to return something?
            // a weird node of some sort...
            // but just in case...
            if (col == -1)
                return BuildLeafNode(y.Mode());

            used.Add(col);

            Node node = new Node
            {
                Column = col,
                Gain = gain,
                IsLeaf = false,
                Name = Descriptor.ColumnAt(col)
            };

            // populate edges
            List<Edge> edges = new List<Edge>(measure.Segments.Length);
            for (int i = 0; i < measure.Segments.Length; i++)
            {
                // working set
                var segment = measure.Segments[i];
                var edge = new Edge()
                {
                    ParentId = node.Id,
                    Discrete = measure.Discrete,
                    Min = segment.Min,
                    Max = segment.Max
                };

                IEnumerable<int> slice;

                if (edge.Discrete)
                {
                    // get discrete label
                    edge.Label = Descriptor.At(col).Convert(segment.Min).ToString();
                    // do value check for matrix slicing
                    slice = x.Indices(v => v[col] == segment.Min);
                }
                else
                {
                    // get range label
                    edge.Label = string.Format("{0} <= x < {1}", segment.Min, segment.Max);
                    // do range check for matrix slicing
                    slice = x.Indices(v => v[col] >= segment.Min && v[col] < segment.Max);
                }

                // something to look at?
                // if this number is 0 then this edge
                // leads to a dead end - the edge will
                // not be built
                if (slice.Count() > 0)
                {
                    Vector ySlice = y.Slice(slice);
                    // only one answer, set leaf
                    if (ySlice.Distinct().Count() == 1)
                    {
                        var child = BuildLeafNode(ySlice[0]);
                        tree.AddVertex(child);
                        edge.ChildId = child.Id;
                    }
                    // otherwise continue to build tree
                    else
                    {
                        var child = BuildTree(x.Slice(slice), ySlice, depth - 1, used, tree);
                        tree.AddVertex(child);
                        edge.ChildId = child.Id;
                    }

                    edges.Add(edge);
                }
            }

            // problem, need to convert
            // parent to terminal node
            // with mode
            if (edges.Count <= 1)
            {
                var val = y.Mode();
                node.IsLeaf = true;
                node.Value = val;
            }

            tree.AddVertex(node);
//.........這裏部分代碼省略.........
開發者ID:sethjuarez,項目名稱:numl,代碼行數:101,代碼來源:DecisionTreeGenerator.cs

示例8: GenerateModel

        private static LearningModel GenerateModel(IGenerator generator, Matrix x, Vector y, IEnumerable<object> examples, double trainingPct)
        {
            var descriptor = generator.Descriptor;
            var total = examples.Count();
            var trainingCount = (int)System.Math.Floor(total * trainingPct);

            // 100 - trainingPercentage for testing
            var testingSlice = GetTestPoints(total - trainingCount, total).ToArray();

            // trainingPercentage for training
            var trainingSlice = GetTrainingPoints(testingSlice, total).ToArray();

            // training
            var x_t = x.Slice(trainingSlice);
            var y_t = y.Slice(trainingSlice);

            // generate model
            var model = generator.Generate(x_t, y_t);
            model.Descriptor = descriptor;

            // testing
            object[] test = GetTestExamples(testingSlice, examples);
            double accuracy = 0;

            for (int j = 0; j < test.Length; j++)
            {
                // items under test
                object o = test[j];

                // get truth
                var truth = Ject.Get(o, descriptor.Label.Name);

                // if truth is a string, sanitize
                if (descriptor.Label.Type == typeof(string))
                    truth = StringHelpers.Sanitize(truth.ToString());

                // make prediction
                var features = descriptor.Convert(o, false).ToVector();

                var p = model.Predict(features);
                var pred = descriptor.Label.Convert(p);

                // assess accuracy
                if (truth.Equals(pred))
                    accuracy += 1;
            }

            // get percentage correct
            accuracy /= test.Length;

            return new LearningModel { Generator = generator, Model = model, Accuracy = accuracy };
        }
開發者ID:vladtepes1473,項目名稱:numl,代碼行數:52,代碼來源:Learner.cs

示例9: Generate


//.........這裏部分代碼省略.........
                    if (newPair.Item1 >= 0 && newPair.Item2 >= 0 && newPair.Item1 != newPair.Item2)
                    {
                        i = newPair.Item1; j = newPair.Item2;
                        // compute new gradients
                        gradient[i] = Bias + (alpha * y * K[i, VectorType.Col]).Sum() - y[i];

                        if ((y[i] * gradient[i] < -this.Epsilon && alpha[i] < this.C) || (y[i] * gradient[i] > this.Epsilon && alpha[i] > 0))
                        {
                            gradient[j] = Bias + (alpha * y * K[j, VectorType.Col]).Sum() - y[j];

                            // store temp working copies of alpha from both pairs (i, j)
                            tempAI = alpha[i]; tempAJ = alpha[j];

                            // update lower and upper bounds of lagrange multipliers
                            if (y[i] == y[j])
                            {
                                // pairs are same class don't apply large margin
                                lagLow = System.Math.Max(0.0, alpha[j] + alpha[i] - this.C);
                                lagHigh = System.Math.Min(this.C, alpha[j] + alpha[i]);
                            }
                            else
                            {
                                // pairs are not same class, apply large margin
                                lagLow = System.Math.Max(0.0, alpha[j] - alpha[i]);
                                lagHigh = System.Math.Min(this.C, this.C + alpha[j] - alpha[i]);
                            }

                            // if lagrange constraints are not diverse then get new working set
                            if (lagLow == lagHigh) continue;

                            // compute cost and if it's greater than 0 skip
                            // cost should optimise large margin where fit line intercepts <= 0
                            cost = 2.0 * K[i, j] - K[i, i] - K[j, j];
                            if (cost >= 0.0) continue;
                            else
                            {
                                // update alpha of (j) w.r.t to the relative cost difference of the i-th and j-th gradient
                                alpha[j] = alpha[j] - (y[j] * (gradient[i] - gradient[j])) / cost;

                                // clip alpha with lagrange multipliers
                                alpha[j] = System.Math.Min(lagHigh, alpha[j]);
                                alpha[j] = System.Math.Max(lagLow, alpha[j]);

                                // check alpha tolerance factor
                                if (System.Math.Abs(alpha[j] - tempAJ) < this.Epsilon)
                                {
                                    // we're optimising large margins so skip small ones
                                    alpha[j] = tempAJ; continue;
                                }

                                // update alpha of i if we have a large margin w.r.t to alpha (j)
                                alpha[i] = alpha[i] + y[i] * y[j] * (tempAJ - alpha[j]);

                                // precompute i, j into feasible region for Bias
                                double yBeta = (alpha[i] - tempAI) * K[i, j] - y[j] * (alpha[j] - tempAJ);
                                // store temp beta with gradient for i, j pairs
                                double beta_i = this.Bias - gradient[i] - y[i] * yBeta * K[i, j];
                                double beta_j = this.Bias - gradient[j] - y[i] * yBeta * K[j, j];

                                // update new bias with constrained alpha limits (0 < alpha < C)
                                if (0.0 < alpha[i] && alpha[i] < this.C) this.Bias = beta_i;
                                else if (0.0 < alpha[j] && alpha[j] < this.C) this.Bias = beta_j;
                                else this.Bias = (beta_i + beta_j) / 2.0;

                                changes++;
                            }
                        }
                    }
                    else if (newPair.Item1 == -1 || newPair.Item2 == -1)
                    {
                        // unable to find suitable sub problem (j) to optimise
                        finalise = true;
                        break;
                    }
                }

                if (changes == 0) iterations++;
                else iterations = 0;

                #endregion
            }

            // get only supporting parameters where alpha is positive
            // i.e. because 0 < alpha < large margin
            int[] fitness = (alpha > 0d).ToArray();

            // return initialised model
            return new SVMModel()
            {
                Descriptor = this.Descriptor,
                FeatureNormalizer = base.FeatureNormalizer,
                FeatureProperties = base.FeatureProperties,
                Theta = ((alpha * y) * X).ToVector(),
                Alpha = alpha.Slice(fitness),
                Bias = this.Bias,
                X = X.Slice(fitness, VectorType.Row),
                Y = y.Slice(fitness),
                KernelFunction = this.KernelFunction
            };
        }
開發者ID:sethjuarez,項目名稱:numl,代碼行數:101,代碼來源:SVMGenerator.cs

示例10: Generate

        /// <summary>Generate model based on a set of examples.</summary>
        /// <param name="x">The Matrix to process.</param>
        /// <param name="y">The Vector to process.</param>
        /// <returns>Model.</returns>
        public override IModel Generate(Matrix x, Vector y)
        {
            var N = y.Length;
            var a = Vector.Zeros(N);

            // compute kernel
            var K = this.Kernel.Compute(x);

            var n = 1;

            // hopefully enough to converge right? ;)
            // need to be smarter about storing SPD kernels...
            var found_error = true;
            while (n < 500 && found_error)
            {
                found_error = false;
                for (var i = 0; i < N; i++)
                {
                    found_error = y[i] * a.Dot(K[i]) <= 0;
                    if (found_error)
                    {
                        a[i] += y[i];
                    }
                }

                n++;
            }

            // anything that *matters*
            // i.e. support vectors
            var indices = a.Indices(d => d != 0);

            // slice up examples to contain
            // only support vectors
            return new KernelPerceptronModel
                       {
                          Kernel = this.Kernel, A = a.Slice(indices), Y = y.Slice(indices), X = x.Slice(indices)
                       };
        }
開發者ID:ChewyMoon,項目名稱:Cupcake,代碼行數:43,代碼來源:KernelPerceptronGenerator.cs

示例11: GenerateModel

        /// <summary>Generates a model.</summary>
        /// <param name="generator">Model generator used.</param>
        /// <param name="x">The Matrix to process.</param>
        /// <param name="y">The Vector to process.</param>
        /// <param name="examples">Source data.</param>
        /// <param name="trainingPct">The training pct.</param>
        /// <param name="total">Number of Examples</param>
        /// <returns>The model.</returns>
        private static LearningModel GenerateModel(IGenerator generator, Matrix x, Vector y, IEnumerable<object> examples, double trainingPct, int total)
        {
            var descriptor = generator.Descriptor;
            //var total = examples.Count();
            var trainingCount = (int)System.Math.Floor(total * trainingPct);

            // 100 - trainingPercentage for testing
            var testingSlice = GetTestPoints(total - trainingCount, total).ToArray();

            // trainingPercentage for training
            var trainingSlice = GetTrainingPoints(testingSlice, total).ToArray();

            // training
            var x_t = x.Slice(trainingSlice);
            var y_t = y.Slice(trainingSlice);

            // generate model
            var model = generator.Generate(x_t, y_t);
            model.Descriptor = descriptor;

            Score score = new Score();

            if (testingSlice.Count() > 0)
            {
                // testing
                object[] test = GetTestExamples(testingSlice, examples);
                Vector y_pred = new Vector(test.Length);
                Vector y_test = descriptor.ToExamples(test).Item2;

                bool isBinary = y_test.IsBinary();
                if (isBinary)
                    y_test = y_test.ToBinary(f => f == 1d, 1.0, 0.0);

                for (int j = 0; j < test.Length; j++)
                {
                    // items under test
                    object o = test[j];

                    // make prediction
                    var features = descriptor.Convert(o, false).ToVector();
                    // --- temp changes ---
                    double val = model.Predict(features);
                    var pred = descriptor.Label.Convert(val);

                    var truth = Ject.Get(o, descriptor.Label.Name);

                    if (truth.Equals(pred))
                        y_pred[j] = y_test[j];
                    else
                        y_pred[j] = (isBinary ? (y_test[j] >= 1d ? 0d : 1d) : val);
                }

                // score predictions
                score = Score.ScorePredictions(y_pred, y_test);
            }

            return new LearningModel { Generator = generator, Model = model, Score = score };
        }
開發者ID:sethjuarez,項目名稱:numl,代碼行數:66,代碼來源:Learner.cs


注:本文中的numl.Math.LinearAlgebra.Vector.Slice方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。