當前位置: 首頁>>代碼示例>>C#>>正文


C# Vector.Dot方法代碼示例

本文整理匯總了C#中numl.Math.LinearAlgebra.Vector.Dot方法的典型用法代碼示例。如果您正苦於以下問題:C# Vector.Dot方法的具體用法?C# Vector.Dot怎麽用?C# Vector.Dot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在numl.Math.LinearAlgebra.Vector的用法示例。


在下文中一共展示了Vector.Dot方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: Compute

        /// <summary>Computes.</summary>
        /// <exception cref="InvalidOperationException">Thrown when the requested operation is invalid.</exception>
        /// <param name="x">The Vector to process.</param>
        /// <param name="y">The Vector to process.</param>
        /// <returns>A double.</returns>
        public double Compute(Vector x, Vector y)
        {
            if (x.Length != y.Length)
                throw new InvalidOperationException("Cannot compute similarity between two unequally sized Vectors!");

            var xSum = x.Sum();
            var ySum = y.Sum();
            
            var xElem = (x^2).Sum() - ((xSum * xSum) / x.Length);
            var yElem = (y^2).Sum() - ((ySum * ySum) / y.Length);

            return (x.Dot(y) - ((xSum * ySum) / x.Length)) / System.Math.Sqrt(xElem * yElem);
        }
開發者ID:m-abubakar,項目名稱:numl,代碼行數:18,代碼來源:PearsonCorrelation.cs

示例2: ComputeCost

        /// <summary>
        /// Compute the error cost of the given Theta parameter for the training and label sets
        /// </summary>
        /// <param name="theta">Learning Theta parameters</param>
        /// <param name="X">Training set</param>
        /// <param name="y">Training labels</param>
        /// <param name="lambda">Regularization constant</param>
        /// <param name="regularizer">Regularization term function.</param>
        /// <returns></returns>
        public double ComputeCost(Vector theta, Matrix X, Vector y, double lambda, IRegularizer regularizer)
        {
            int m = X.Rows;

            double j = 0.0;

            Vector s = (X * theta).ToVector();

            IFunction function = new Logistic();
            s = s.Each(v => function.Compute(v));

            Vector slog = s.Copy().Each(v => System.Math.Log(System.Math.Abs(1.0 - v)));

            j = (-1.0 / m) * ( (y.Dot(s.Log())) + (-1.0 * ((1.0 - y).Dot(slog))) );

            if (lambda != 0)
            {
                j = regularizer.Regularize(j, theta, m, lambda);
            }

            return j;
        }
開發者ID:m-abubakar,項目名稱:numl,代碼行數:31,代碼來源:LogisticCostFunction.cs

示例3: Compute

 public double Compute(Vector x, Vector y)
 {
     double dot = x.Dot(y);
     return dot / (System.Math.Pow(x.Norm(), 2) + System.Math.Pow(y.Norm(), 2) - dot);
 }
開發者ID:budbjames,項目名稱:numl,代碼行數:5,代碼來源:TanimotoCoefficient.cs

示例4: Compute

 /// <summary>
 /// Computes the linear kernel function between the two input vectors.
 /// </summary>
 /// <param name="v1">Vector one.</param>
 /// <param name="v2">Vector two.</param>
 /// <returns>Similarity.</returns>
 public double Compute(Vector v1, Vector v2)
 {
     return v1.Dot(v2);
 }
開發者ID:sethjuarez,項目名稱:numl,代碼行數:10,代碼來源:LinearKernel.cs

示例5: Compute

 /// <summary>Computes.</summary>
 /// <param name="x">The Vector to process.</param>
 /// <param name="y">The Vector to process.</param>
 /// <returns>A double.</returns>
 public double Compute(Vector x, Vector y)
 {
     return x.Dot(y) / (x.Norm() * y.Norm());
 }
開發者ID:m-abubakar,項目名稱:numl,代碼行數:8,代碼來源:CosineSimilarity.cs

示例6: Compute

 /// <summary>
 /// Computes the logistic kernel function between the two input vectors.
 /// </summary>
 /// <param name="v1">Vector one.</param>
 /// <param name="v2">Vector two.</param>
 /// <returns>Similarity.</returns>
 public double Compute(Vector v1, Vector v2)
 {
     return LogisticFunction.Compute(v1.Dot(v2));
 }
開發者ID:sethjuarez,項目名稱:numl,代碼行數:10,代碼來源:LogisticKernel.cs

示例7: Compute

 /// <summary>Computes.</summary>
 /// <param name="x">The Vector to process.</param>
 /// <param name="y">The Vector to process.</param>
 /// <returns>A double.</returns>
 public double Compute(Vector x, Vector y)
 {
     var dot = x.Dot(y);
     return dot / (Math.Pow(x.Norm(), 2) + Math.Pow(y.Norm(), 2) - dot);
 }
開發者ID:ChewyMoon,項目名稱:Cupcake,代碼行數:9,代碼來源:TanimotoCoefficient.cs

示例8: Predict

        /// <summary>
        ///     Create a prediction based on the learned Theta values and the supplied test item.
        /// </summary>
        /// <param name="y">Training record</param>
        /// <returns></returns>
        public override double Predict(Vector y)
        {
            y = this.Normalise(y);

            return y.Dot(this.Theta);
        }
開發者ID:ChewyMoon,項目名稱:Cupcake,代碼行數:11,代碼來源:LinearRegressionModel.cs

示例9: Compute

 /// <summary>
 /// Computes the polynomial kernel function between the two input vectors.
 /// </summary>
 /// <param name="v1">Vector one.</param>
 /// <param name="v2">Vector two.</param>
 /// <returns>Similarity.</returns>
 public double Compute(Vector v1, Vector v2)
 {
     return System.Math.Pow((1d + v1.Dot(v2)), Dimension);
 }
開發者ID:sethjuarez,項目名稱:numl,代碼行數:10,代碼來源:PolyKernel.cs


注:本文中的numl.Math.LinearAlgebra.Vector.Dot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。