本文整理匯總了C#中Portfish.Position.pieces_C方法的典型用法代碼示例。如果您正苦於以下問題:C# Position.pieces_C方法的具體用法?C# Position.pieces_C怎麽用?C# Position.pieces_C使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Portfish.Position
的用法示例。
在下文中一共展示了Position.pieces_C方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: generate_castle
private static void generate_castle(
int Side,
bool Checks,
Position pos,
MoveStack[] ms,
ref int mpos,
int us)
{
if (pos.castle_impeded(us, Side) || (pos.can_castle_CR(Utils.make_castle_right(us, Side)) == 0))
{
return;
}
// After castling, the rook and king final positions are the same in Chess960
// as they would be in standard chess.
var kfrom = pos.king_square(us);
var rfrom = pos.castle_rook_square(us, Side);
var kto = Utils.relative_square(us, Side == CastlingSideC.KING_SIDE ? SquareC.SQ_G1 : SquareC.SQ_C1);
var enemies = pos.pieces_C(us ^ 1);
Debug.Assert(!pos.in_check());
int K = pos.chess960 ? kto > kfrom ? -1 : 1 : Side == CastlingSideC.KING_SIDE ? -1 : 1;
for (Square s = kto; s != kfrom; s += (Square)K)
{
if ((pos.attackers_to(s) & enemies) != 0)
{
return;
}
}
// Because we generate only legal castling moves we need to verify that
// when moving the castling rook we do not discover some hidden checker.
// For instance an enemy queen in SQ_A1 when castling rook is in SQ_B1.
if (pos.chess960 && ((pos.attackers_to(kto, Utils.xor_bit(pos.occupied_squares, rfrom)) & enemies) != 0))
{
return;
}
var m = Utils.make(kfrom, rfrom, MoveTypeC.CASTLING);
if (Checks)
{
var ci = CheckInfoBroker.GetObject();
ci.CreateCheckInfo(pos);
var givesCheck = pos.move_gives_check(m, ci);
CheckInfoBroker.Free();
if (!givesCheck)
{
return;
}
}
ms[mpos++].move = m;
}
示例2: generate_castle
private static void generate_castle(CastlingSide Side, bool OnlyChecks, Position pos, MoveStack[] ms, ref int mpos, Color us)
{
if (pos.castle_impeded(us, Side) || (pos.can_castle_CR(Utils.make_castle_right(us, Side))==0) )
return;
// After castling, the rook and king final positions are the same in Chess960
// as they would be in standard chess.
Square kfrom = pos.king_square(us);
Square rfrom = pos.castle_rook_square(us, Side);
Square kto = Utils.relative_square(us, Side == CastlingSideC.KING_SIDE ? SquareC.SQ_G1 : SquareC.SQ_C1);
Bitboard enemies = pos.pieces_C(us ^ 1);
Debug.Assert(!pos.in_check());
for (Square s = Math.Min(kfrom, kto), e = Math.Max(kfrom, kto); s <= e; s++)
if (s != kfrom // We are not in check
&& ((pos.attackers_to(s) & enemies) != 0))
return;
// Because we generate only legal castling moves we need to verify that
// when moving the castling rook we do not discover some hidden checker.
// For instance an enemy queen in SQ_A1 when castling rook is in SQ_B1.
if (pos.chess960
&& ((pos.attackers_to(kto, Utils.xor_bit(pos.occupied_squares, rfrom)) & enemies) != 0))
return;
Move m = Utils.make_castle(kfrom, rfrom);
if (OnlyChecks)
{
CheckInfo ci = CheckInfoBroker.GetObject();
ci.CreateCheckInfo(pos);
bool givesCheck = pos.move_gives_check(m, ci);
CheckInfoBroker.Free();
if (!givesCheck) return;
}
ms[mpos++].move = m;
}
示例3: check_is_dangerous
// check_is_dangerous() tests if a checking move can be pruned in qsearch().
// bestValue is updated only when returning false because in that case move
// will be pruned.
static bool check_is_dangerous(Position pos, Move move, Value futilityBase, Value beta)
{
Bitboard b, occ, oldAtt, newAtt, kingAtt;
Square from, to, ksq;
Piece pc;
Color them;
from = Utils.from_sq(move);
to = Utils.to_sq(move);
them = Utils.flip_C(pos.sideToMove);
ksq = pos.king_square(them);
kingAtt = Position.attacks_from_KING(ksq);
pc = pos.piece_moved(move);
occ = pos.occupied_squares ^ Utils.SquareBB[from] ^ Utils.SquareBB[ksq];
oldAtt = Position.attacks_from(pc, from, occ);
newAtt = Position.attacks_from(pc, to, occ);
// Rule 1. Checks which give opponent's king at most one escape square are dangerous
b = kingAtt & ~pos.pieces_C(them) & ~newAtt & ~(1UL << to);
if ((b & (b - 1)) == 0) // Catches also !b
return true;
// Rule 2. Queen contact check is very dangerous
if (Utils.type_of(pc) == PieceTypeC.QUEEN
&& (Utils.bit_is_set(kingAtt, to) != 0))
return true;
// Rule 3. Creating new double threats with checks
b = pos.pieces_C(them) & newAtt & ~oldAtt & ~(1UL << ksq);
while (b != 0)
{
// Note that here we generate illegal "double move"!
if (futilityBase + Position.PieceValueEndgame[pos.piece_on(Utils.pop_1st_bit(ref b))] >= beta)
return true;
}
return false;
}
示例4: evaluate_unstoppable_pawns
// evaluate_unstoppable_pawns() evaluates the unstoppable passed pawns for both sides, this is quite
// conservative and returns a winning score only when we are very sure that the pawn is winning.
private static int evaluate_unstoppable_pawns(Position pos, EvalInfo ei)
{
ulong b, b2, blockers, supporters, queeningPath, candidates;
int s, blockSq, queeningSquare;
int c, winnerSide, loserSide;
bool pathDefended, opposed;
int pliesToGo = 0, movesToGo, oppMovesToGo = 0, sacptg, blockersCount, minKingDist, kingptg, d;
int pliesToQueenWHITE = 256, pliesToQueenBLACK = 256, pliesToQueenWinner = 256;
// Step 1. Hunt for unstoppable passed pawns. If we find at least one,
// record how many plies are required for promotion.
for (c = ColorC.WHITE; c <= ColorC.BLACK; c++)
{
// Skip if other side has non-pawn pieces
if (pos.non_pawn_material(Utils.flip_C(c)) != 0)
{
continue;
}
b = ei.pi.passed_pawns(c);
while (b != 0)
{
s = Utils.pop_lsb(ref b);
queeningSquare = Utils.relative_square(c, Utils.make_square(Utils.file_of(s), RankC.RANK_8));
queeningPath = Utils.forward_bb(c, s);
// Compute plies to queening and check direct advancement
movesToGo = Utils.rank_distance(s, queeningSquare)
- (Utils.relative_rank_CS(c, s) == RankC.RANK_2 ? 1 : 0);
oppMovesToGo = Utils.square_distance(pos.king_square(Utils.flip_C(c)), queeningSquare)
- ((c != pos.sideToMove) ? 1 : 0);
pathDefended = ((ei.attackedBy[c][0] & queeningPath) == queeningPath);
if (movesToGo >= oppMovesToGo && !pathDefended)
{
continue;
}
// Opponent king cannot block because path is defended and position
// is not in check. So only friendly pieces can be blockers.
Debug.Assert(!pos.in_check());
Debug.Assert((queeningPath & pos.occupied_squares) == (queeningPath & pos.pieces_C(c)));
// Add moves needed to free the path from friendly pieces and retest condition
movesToGo += Bitcount.popcount_1s_Max15(queeningPath & pos.pieces_C(c));
if (movesToGo >= oppMovesToGo && !pathDefended)
{
continue;
}
pliesToGo = 2 * movesToGo - ((c == pos.sideToMove) ? 1 : 0);
if (c == ColorC.WHITE)
{
pliesToQueenWHITE = Math.Min(pliesToQueenWHITE, pliesToGo);
}
else
{
pliesToQueenBLACK = Math.Min(pliesToQueenBLACK, pliesToGo);
}
}
}
// Step 2. If either side cannot promote at least three plies before the other side then situation
// becomes too complex and we give up. Otherwise we determine the possibly "winning side"
if (Math.Abs(pliesToQueenWHITE - pliesToQueenBLACK) < 3)
{
return ScoreC.SCORE_ZERO;
}
winnerSide = (pliesToQueenWHITE < pliesToQueenBLACK ? ColorC.WHITE : ColorC.BLACK);
pliesToQueenWinner = (winnerSide == ColorC.WHITE) ? pliesToQueenWHITE : pliesToQueenBLACK;
loserSide = Utils.flip_C(winnerSide);
// Step 3. Can the losing side possibly create a new passed pawn and thus prevent the loss?
b = candidates = pos.pieces_PTC(PieceTypeC.PAWN, loserSide);
while (b != 0)
{
s = Utils.pop_lsb(ref b);
// Compute plies from queening
queeningSquare = Utils.relative_square(loserSide, Utils.make_square(Utils.file_of(s), RankC.RANK_8));
movesToGo = Utils.rank_distance(s, queeningSquare)
- ((Utils.relative_rank_CS(loserSide, s) == RankC.RANK_2) ? 1 : 0);
pliesToGo = 2 * movesToGo - ((loserSide == pos.sideToMove) ? 1 : 0);
// Check if (without even considering any obstacles) we're too far away or doubled
if ((pliesToQueenWinner + 3 <= pliesToGo)
|| ((Utils.forward_bb(loserSide, s) & pos.pieces_PTC(PieceTypeC.PAWN, loserSide)) != 0))
{
Utils.xor_bit(ref candidates, s);
}
}
// If any candidate is already a passed pawn it _may_ promote in time. We give up.
//.........這裏部分代碼省略.........
示例5: generate_evasion
internal static void generate_evasion(Position pos, MoveStack[] ms, ref int mpos)
{
/// generate<EVASIONS> generates all pseudo-legal check evasions when the side
/// to move is in check. Returns a pointer to the end of the move list.
Debug.Assert(pos.in_check());
ulong b;
int from, checksq;
var checkersCnt = 0;
var us = pos.sideToMove;
var ksq = pos.king_square(us);
ulong sliderAttacks = 0;
var checkers = pos.st.checkersBB;
Debug.Assert(checkers != 0);
// Find squares attacked by slider checkers, we will remove them from the king
// evasions so to skip known illegal moves avoiding useless legality check later.
b = checkers;
do
{
checkersCnt++;
checksq = Utils.pop_lsb(ref b);
Debug.Assert(Utils.color_of(pos.piece_on(checksq)) == Utils.flip_C(us));
switch (Utils.type_of(pos.piece_on(checksq)))
{
case PieceTypeC.BISHOP:
sliderAttacks |= Utils.PseudoAttacks[PieceTypeC.BISHOP][checksq];
break;
case PieceTypeC.ROOK:
sliderAttacks |= Utils.PseudoAttacks[PieceTypeC.ROOK][checksq];
break;
case PieceTypeC.QUEEN:
// If queen and king are far or not on a diagonal line we can safely
// remove all the squares attacked in the other direction becuase are
// not reachable by the king anyway.
if ((Utils.between_bb(ksq, checksq) != 0)
|| ((Utils.bit_is_set(Utils.PseudoAttacks[PieceTypeC.BISHOP][checksq], ksq)) == 0))
{
sliderAttacks |= Utils.PseudoAttacks[PieceTypeC.QUEEN][checksq];
}
// Otherwise we need to use real rook attacks to check if king is safe
// to move in the other direction. For example: king in B2, queen in A1
// a knight in B1, and we can safely move to C1.
else
{
sliderAttacks |= Utils.PseudoAttacks[PieceTypeC.BISHOP][checksq]
| pos.attacks_from_ROOK(checksq);
}
break;
default:
break;
}
}
while (b != 0);
// Generate evasions for king, capture and non capture moves
b = Position.attacks_from_KING(ksq) & ~pos.pieces_C(us) & ~sliderAttacks;
from = ksq;
while (b != 0)
{
ms[mpos++].move = Utils.make_move(from, Utils.pop_lsb(ref b));
}
// Generate evasions for other pieces only if not under a double check
if (checkersCnt > 1)
{
return;
}
// Blocking evasions or captures of the checking piece
var target = Utils.between_bb(checksq, ksq) | checkers;
generate_all(GenType.EVASIONS, pos, ms, ref mpos, us, target, null);
}
示例6: check_is_dangerous
// check_is_dangerous() tests if a checking move can be pruned in qsearch().
// bestValue is updated only when returning false because in that case move
// will be pruned.
private static bool check_is_dangerous(Position pos, int move, int futilityBase, int beta)
{
//ulong b, occ, oldAtt, newAtt, kingAtt;
//int from, to, ksq;
//int pc;
//int them;
//from = Utils.from_sq(move);
//to = Utils.to_sq(move);
//them = Utils.flip_C(pos.sideToMove);
//ksq = pos.king_square(them);
//kingAtt = Position.attacks_from_KING(ksq);
//pc = pos.piece_moved(move);
//occ = pos.occupied_squares ^ Utils.SquareBB[from] ^ Utils.SquareBB[ksq];
//oldAtt = Position.attacks_from(pc, from, occ);
//newAtt = Position.attacks_from(pc, to, occ);
//// Rule 1. Checks which give opponent's king at most one escape square are dangerous
//b = kingAtt & ~pos.pieces_C(them) & ~newAtt & ~(1UL << to);
//if ((b & (b - 1)) == 0) // Catches also !b
Piece pc = pos.piece_moved(move);
Square from = Utils.from_sq(move);
Square to = Utils.to_sq(move);
Color them = pos.sideToMove ^ 1;
Square ksq = pos.king_square(them);
Bitboard enemies = pos.pieces_C(them);
Bitboard kingAtt = Position.attacks_from_KING(ksq);
Bitboard occ = pos.occupied_squares ^ Utils.SquareBB[from] ^ Utils.SquareBB[ksq];
Bitboard oldAtt = Position.attacks_from(pc, from, occ);
Bitboard newAtt = Position.attacks_from(pc, to, occ);
// Checks which give opponent's king at most one escape square are dangerous
if (!Utils.more_than_one(kingAtt & ~(enemies | newAtt | (ulong)to)))
{
return true;
}
// Queen contact check is very dangerous
if (Utils.type_of(pc) == PieceTypeC.QUEEN && (Utils.bit_is_set(kingAtt, to) != 0))
{
return true;
}
// Creating new double threats with checks is dangerous
Bitboard b = (enemies ^ (ulong)ksq) & newAtt & ~oldAtt;
while (b != 0)
{
// Note that here we generate illegal "double move"!
if (futilityBase + Position.PieceValue[PhaseC.EG][pos.piece_on(Utils.pop_lsb(ref b))] >= beta)
{
return true;
}
}
return false;
}