當前位置: 首頁>>代碼示例>>C#>>正文


C# Position.exclusion_key方法代碼示例

本文整理匯總了C#中Portfish.Position.exclusion_key方法的典型用法代碼示例。如果您正苦於以下問題:C# Position.exclusion_key方法的具體用法?C# Position.exclusion_key怎麽用?C# Position.exclusion_key使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在Portfish.Position的用法示例。


在下文中一共展示了Position.exclusion_key方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: search


//.........這裏部分代碼省略.........
            // Enforce node limit here. FIXME: This only works with 1 search thread.
            if ((Limits.nodes != 0) && pos.nodes >= Limits.nodes)
                SignalsStop = true;

            if ((SignalsStop
                 || pos.is_draw(false)
                 || ss[ssPos].ply > Constants.MAX_PLY) && !RootNode)
            {
                MovesSearchedBroker.Free();
                return ValueC.VALUE_DRAW;
            }

            // Step 3. Mate distance pruning. Even if we mate at the next move our score
            // would be at best mate_in(ss[ssPos].ply+1), but if alpha is already bigger because
            // a shorter mate was found upward in the tree then there is no need to search
            // further, we will never beat current alpha. Same logic but with reversed signs
            // applies also in the opposite condition of being mated instead of giving mate,
            // in this case return a fail-high score.
            if (!RootNode)
            {
                alpha = Math.Max(Utils.mated_in(ss[ssPos].ply), alpha);
                beta = Math.Min(Utils.mate_in(ss[ssPos].ply + 1), beta);
                if (alpha >= beta)
                {
                    MovesSearchedBroker.Free();
                    return alpha;
                }
            }

            // Step 4. Transposition table lookup
            // We don't want the score of a partial search to overwrite a previous full search
            // TT value, so we use a different position key in case of an excluded move.
            excludedMove = ss[ssPos].excludedMove;
            posKey = (excludedMove != 0) ? pos.exclusion_key() : pos.key();
            tteHasValue = TT.probe(posKey, ref ttePos, out tte);
            ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tteHasValue ? tte.move() : MoveC.MOVE_NONE;
            ttValue = tteHasValue ? value_from_tt(tte.value(), ss[ssPos].ply) : ValueC.VALUE_ZERO;

            // At PV nodes we check for exact scores, while at non-PV nodes we check for
            // a fail high/low. Biggest advantage at probing at PV nodes is to have a
            // smooth experience in analysis mode. We don't probe at Root nodes otherwise
            // we should also update RootMoveList to avoid bogus output.
            if (!RootNode && tteHasValue && (PvNode ? tte.depth() >= depth && tte.type() == Bound.BOUND_EXACT
                                            : can_return_tt(tte, depth, ttValue, beta)))
            {
                TT.entries[ttePos].set_generation(TT.generation);
                ss[ssPos].currentMove = ttMove; // Can be MOVE_NONE

                if (ttValue >= beta
                    && (ttMove != 0)
                    && !pos.is_capture_or_promotion(ttMove)
                    && ttMove != ss[ssPos].killers0)
                {
                    ss[ssPos].killers1 = ss[ssPos].killers0;
                    ss[ssPos].killers0 = ttMove;
                }

                MovesSearchedBroker.Free();
                return ttValue;
            }

            // Step 5. Evaluate the position statically and update parent's gain statistics
            if (inCheck)
                ss[ssPos].eval = ss[ssPos].evalMargin = ValueC.VALUE_NONE;
            else if (tteHasValue)
            {
開發者ID:stevemulligan,項目名稱:Portfish,代碼行數:67,代碼來源:Search.cs

示例2: search

        // search<>() is the main search function for both PV and non-PV nodes and for
        // normal and SplitPoint nodes. When called just after a split point the search
        // is simpler because we have already probed the hash table, done a null move
        // search, and searched the first move before splitting, we don't have to repeat
        // all this work again. We also don't need to store anything to the hash table
        // here: This is taken care of after we return from the split point.
        internal static int search(int NT, Position pos, Stack[] ss, int ssPos, int alpha, int beta, int depth)
        {
            var PvNode = (NT == NodeTypeC.PV || NT == NodeTypeC.Root || NT == NodeTypeC.SplitPointPV
                          || NT == NodeTypeC.SplitPointRoot);
            var SpNode = (NT == NodeTypeC.SplitPointPV || NT == NodeTypeC.SplitPointNonPV
                          || NT == NodeTypeC.SplitPointRoot);
            var RootNode = (NT == NodeTypeC.Root || NT == NodeTypeC.SplitPointRoot);

            Debug.Assert(alpha >= -ValueC.VALUE_INFINITE && alpha < beta && beta <= ValueC.VALUE_INFINITE);
            Debug.Assert((PvNode || alpha == beta - 1));
            Debug.Assert(depth > DepthC.DEPTH_ZERO);

            var ms = MovesSearchedBroker.GetObject();
            var movesSearched = ms.movesSearched;

            StateInfo st = null;
            var tte = TT.StaticEntry;
            var tteHasValue = false;
            uint ttePos = 0;
            ulong posKey = 0;
            int ttMove, move, excludedMove, bestMove, threatMove;
            int ext, newDepth;
            int bestValue, value, ttValue;
            int eval = 0, nullValue, futilityValue;
            bool inCheck, givesCheck, pvMove, singularExtensionNode;
            bool captureOrPromotion, dangerous, doFullDepthSearch;
            int moveCount = 0, playedMoveCount = 0;
            SplitPoint sp = null;

            // Step 1. Initialize node
            var thisThread = pos.this_thread();
            //var threatExtension = false;
            inCheck = pos.in_check();
            
            if (SpNode)
            {
                sp = ss[ssPos].sp;
                bestMove = sp.bestMove;
                threatMove = sp.threatMove;
                bestValue = sp.bestValue;
                ttMove = excludedMove = MoveC.MOVE_NONE;
                ttValue = ValueC.VALUE_NONE;

                Debug.Assert(sp.bestValue > -ValueC.VALUE_INFINITE && sp.moveCount > 0);

                goto split_point_start;
            }

            bestValue = -ValueC.VALUE_INFINITE;
            ss[ssPos].currentMove = threatMove = ss[ssPos + 1].excludedMove = bestMove = MoveC.MOVE_NONE;
            ss[ssPos].ply = ss[ssPos - 1].ply + 1;
            ss[ssPos + 1].skipNullMove = 0;
            ss[ssPos + 1].reduction = DepthC.DEPTH_ZERO;
            ss[ssPos + 2].killers0 = ss[ssPos + 2].killers1 = MoveC.MOVE_NONE;

            // Used to send selDepth info to GUI
            if (PvNode && thisThread.maxPly < ss[ssPos].ply)
            {
                thisThread.maxPly = ss[ssPos].ply;
            }
            
            if (!RootNode)
            {
                // Step 2. Check for aborted search and immediate draw
                if ((SignalsStop || pos.is_draw(false) || ss[ssPos].ply > Constants.MAX_PLY))
                {
                    MovesSearchedBroker.Free();
                    return DrawValue[pos.sideToMove];
                }

                // Step 3. Mate distance pruning. Even if we mate at the next move our score
                // would be at best mate_in(ss->ply+1), but if alpha is already bigger because
                // a shorter mate was found upward in the tree then there is no need to search
                // further, we will never beat current alpha. Same logic but with reversed signs
                // applies also in the opposite condition of being mated instead of giving mate,
                // in this case return a fail-high score.
                alpha = Math.Max(Utils.mated_in(ss[ssPos].ply), alpha);
                beta = Math.Min(Utils.mate_in(ss[ssPos].ply + 1), beta);
                if (alpha >= beta)
                {
                    MovesSearchedBroker.Free();
                    return alpha;
                }
            }

            // Step 4. Transposition table lookup
            // We don't want the score of a partial search to overwrite a previous full search
            // TT value, so we use a different position key in case of an excluded move.
            excludedMove = ss[ssPos].excludedMove;
            posKey = (excludedMove != 0) ? pos.exclusion_key() : pos.key();
            tteHasValue = TT.probe(posKey, ref ttePos, out tte);
            ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tteHasValue ? tte.move() : MoveC.MOVE_NONE;
            ttValue = tteHasValue ? value_from_tt(tte.value(), ss[ssPos].ply) : ValueC.VALUE_NONE;

//.........這裏部分代碼省略.........
開發者ID:torfranz,項目名稱:Portfish,代碼行數:101,代碼來源:Search.cs


注:本文中的Portfish.Position.exclusion_key方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。