本文整理匯總了C#中Beta.IsUniform方法的典型用法代碼示例。如果您正苦於以下問題:C# Beta.IsUniform方法的具體用法?C# Beta.IsUniform怎麽用?C# Beta.IsUniform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類Beta
的用法示例。
在下文中一共展示了Beta.IsUniform方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。
示例1: LogisticProposalDistribution
/// <summary>
/// Find the Laplace approximation for Beta(Logistic(x)) * Gaussian(x))
/// </summary>
/// <param name="beta">Beta distribution</param>
/// <param name="gauss">Gaussian distribution</param>
/// <returns>A proposal distribution</returns>
public static Gaussian LogisticProposalDistribution(Beta beta, Gaussian gauss)
{
if (beta.IsUniform())
return new Gaussian(gauss);
// if gauss is uniform, m,p = 0 below, and the following code will just ignore the Gaussian
// and do a Laplace approximation for Beta(Logistic(x))
double c = beta.TrueCount-1;
double d = beta.FalseCount-1;
double m = gauss.GetMean();
double p = gauss.Precision;
// We want to find the mode of
// ln(g(x)) = c.ln(f(x)) + d.ln(1 - f(x)) - 0.5p((x - m)^2) + constant
// First deriv:
// h(x) = (ln(g(x))' = c.(1 - f(x)) - d.f(x) - p(x-m)
// Second deriv:
// h'(x) = (ln(g(x))' = -(c+d).f'(x) - p
// Use Newton-Raphson to find unique root of h(x).
// g(x) is log-concave so Newton-Raphson should converge quickly.
// Set the initial point by projecting beta
// to a Gaussian and taking the mean of the product:
double bMean, bVar;
beta.GetMeanAndVariance(out bMean, out bVar);
Gaussian prod = new Gaussian();
double invLogisticMean = Math.Log(bMean) - Math.Log(1.0-bMean);
prod.SetToProduct(Gaussian.FromMeanAndVariance(invLogisticMean, bVar), gauss);
double xnew = prod.GetMean();
double x=0, fx, dfx, hx, dhx=0;
int maxIters = 100; // Should only need a handful of iters
int cnt = 0;
do {
x = xnew;
fx = MMath.Logistic(x);
dfx = fx * (1.0-fx);
// Find the root of h(x)
hx = c * (1.0 - fx) - d * fx - p*(x-m);
dhx = -(c+d)*dfx - p;
xnew = x - (hx / dhx); // The Newton step
if (Math.Abs(x - xnew) < 0.00001)
break;
} while (++cnt < maxIters);
if (cnt >= maxIters)
throw new ApplicationException("Unable to find proposal distribution mode");
return Gaussian.FromMeanAndPrecision(x, -dhx);
}
示例2: LogisticAverageConditional
/// <summary>
/// EP message to 'logistic'
/// </summary>
/// <param name="logistic">Incoming message from 'logistic'.</param>
/// <param name="x">Incoming message from 'x'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <param name="falseMsg">Buffer 'falseMsg'.</param>
/// <returns>The outgoing EP message to the 'logistic' argument</returns>
/// <remarks><para>
/// The outgoing message is a distribution matching the moments of 'logistic' as the random arguments are varied.
/// The formula is <c>proj[p(logistic) sum_(x) p(x) factor(logistic,x)]/p(logistic)</c>.
/// </para></remarks>
/// <exception cref="ImproperMessageException"><paramref name="x"/> is not a proper distribution</exception>
public static Beta LogisticAverageConditional(Beta logistic, [Proper] Gaussian x, Gaussian falseMsg)
{
if (x.IsPointMass)
return Beta.PointMass(MMath.Logistic(x.Point));
if (logistic.IsPointMass || x.IsUniform())
return Beta.Uniform();
double m,v;
x.GetMeanAndVariance(out m, out v);
if ((logistic.TrueCount == 2 && logistic.FalseCount == 1) ||
(logistic.TrueCount == 1 && logistic.FalseCount == 2) ||
logistic.IsUniform()) {
// shortcut for the common case
// result is a Beta distribution satisfying:
// int_p to_p(p) p dp = int_x sigma(x) qnoti(x) dx
// int_p to_p(p) p^2 dp = int_x sigma(x)^2 qnoti(x) dx
// the second constraint can be rewritten as:
// int_p to_p(p) p (1-p) dp = int_x sigma(x) (1 - sigma(x)) qnoti(x) dx
// the constraints are the same if we replace p with (1-p)
double mean = MMath.LogisticGaussian(m, v);
// meanTF = E[p] - E[p^2]
double meanTF = MMath.LogisticGaussianDerivative(m, v);
double meanSquare = mean - meanTF;
return Beta.FromMeanAndVariance(mean, meanSquare - mean*mean);
} else {
// stabilized EP message
// choose a normalized distribution to_p such that:
// int_p to_p(p) qnoti(p) dp = int_x qnoti(sigma(x)) qnoti(x) dx
// int_p to_p(p) p qnoti(p) dp = int_x qnoti(sigma(x)) sigma(x) qnoti(x) dx
double logZ = LogAverageFactor(logistic, x, falseMsg) + logistic.GetLogNormalizer(); // log int_x logistic(sigma(x)) N(x;m,v) dx
Gaussian post = XAverageConditional(logistic, falseMsg) * x;
double mp,vp;
post.GetMeanAndVariance(out mp, out vp);
double tc1 = logistic.TrueCount-1;
double fc1 = logistic.FalseCount-1;
double Ep;
if (tc1+fc1 == 0) {
Beta logistic1 = new Beta(logistic.TrueCount+1, logistic.FalseCount);
double logZp = LogAverageFactor(logistic1, x, falseMsg) + logistic1.GetLogNormalizer();
Ep = Math.Exp(logZp - logZ);
} else {
// Ep = int_p to_p(p) p qnoti(p) dp / int_p to_p(p) qnoti(p) dp
// mp = m + v (a - (a+b) Ep)
Ep = (tc1 - (mp - m)/v)/(tc1+fc1);
}
return BetaFromMeanAndIntegral(Ep, logZ, tc1, fc1);
}
}