當前位置: 首頁>>代碼示例>>C#>>正文


C# Beta.GetMeanAndVariance方法代碼示例

本文整理匯總了C#中Beta.GetMeanAndVariance方法的典型用法代碼示例。如果您正苦於以下問題:C# Beta.GetMeanAndVariance方法的具體用法?C# Beta.GetMeanAndVariance怎麽用?C# Beta.GetMeanAndVariance使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在Beta的用法示例。


在下文中一共展示了Beta.GetMeanAndVariance方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: getClickObservations

		// Get click observations for each chunk and label class
		static private Gaussian[][][] getClickObservations(int numLabs, int chunkSize, int[] labels, int[] clicks, int[] exams)
		{

			int nData = labels.Length;
			int numChunks = (nData + chunkSize - 1) / chunkSize;
			Gaussian[][][] chunks = new Gaussian[numChunks][][];
			int[] obsX = new int[numLabs];

			int startChunk = 0;
			int endChunk = 0;
			for (int c = 0; c < numChunks; c++) {
				startChunk = endChunk;
				endChunk = startChunk + chunkSize;
				if (endChunk > nData)
					endChunk = nData;

				int[] labCnts = getLabelCounts(numLabs, labels, startChunk, endChunk);
				chunks[c] = new Gaussian[numLabs][];
				Gaussian[][] currChunk = chunks[c];
				for (int l = 0; l < numLabs; l++) {
					currChunk[l] = new Gaussian[labCnts[l]];
					obsX[l] = 0;
				}

				for (int d = startChunk; d < endChunk; d++) {
					int lab = labels[d];
					int nC = clicks[d];
					int nE = exams[d];
					int nNC = nE - nC;
					double b0 = 1.0 + nC;  // Observations of clicks
					double b1 = 1.0 + nNC;   // Observations of no clicks
					Beta b = new Beta(b0, b1);
					double m, v;
					b.GetMeanAndVariance(out m, out v);
					Gaussian g = new Gaussian();
					g.SetMeanAndVariance(m, v);
					currChunk[lab][obsX[lab]++] = g;
				}
			}
			return chunks;
		}
開發者ID:xornand,項目名稱:Infer.Net,代碼行數:42,代碼來源:ClickModel.cs

示例2: LogisticProposalDistribution

		/// <summary>
		/// Find the Laplace approximation for Beta(Logistic(x)) * Gaussian(x))
		/// </summary>
		/// <param name="beta">Beta distribution</param>
		/// <param name="gauss">Gaussian distribution</param>
		/// <returns>A proposal distribution</returns>
		public static Gaussian LogisticProposalDistribution(Beta beta, Gaussian gauss)
		{
			if (beta.IsUniform())
				return new Gaussian(gauss);

			// if gauss is uniform, m,p = 0 below, and the following code will just ignore the Gaussian
			// and do a Laplace approximation for Beta(Logistic(x))

			double c = beta.TrueCount-1;
			double d = beta.FalseCount-1;
			double m = gauss.GetMean();
			double p = gauss.Precision;
			// We want to find the mode of
			// ln(g(x)) = c.ln(f(x)) + d.ln(1 - f(x)) - 0.5p((x - m)^2) + constant
			// First deriv:
			// h(x) = (ln(g(x))' = c.(1 - f(x)) - d.f(x) - p(x-m)
			// Second deriv:
			// h'(x) = (ln(g(x))' = -(c+d).f'(x) - p
			// Use Newton-Raphson to find unique root of h(x).
			// g(x) is log-concave so Newton-Raphson should converge quickly.
			// Set the initial point by projecting beta
			// to a Gaussian and taking the mean of the product:
			double bMean, bVar;
			beta.GetMeanAndVariance(out bMean, out bVar);
			Gaussian prod = new Gaussian();
			double invLogisticMean = Math.Log(bMean) - Math.Log(1.0-bMean);
			prod.SetToProduct(Gaussian.FromMeanAndVariance(invLogisticMean, bVar), gauss);
			double xnew = prod.GetMean();
			double x=0, fx, dfx, hx, dhx=0;
			int maxIters = 100; // Should only need a handful of iters
			int cnt = 0;
			do {
				x = xnew;
				fx = MMath.Logistic(x);
				dfx = fx * (1.0-fx);
				// Find the root of h(x)
				hx = c * (1.0 - fx) - d * fx - p*(x-m);
				dhx = -(c+d)*dfx - p;
				xnew = x - (hx / dhx); // The Newton step
				if (Math.Abs(x - xnew) < 0.00001)
					break;
			} while (++cnt < maxIters);
			if (cnt >= maxIters)
				throw new ApplicationException("Unable to find proposal distribution mode");
			return Gaussian.FromMeanAndPrecision(x, -dhx);
		}
開發者ID:xornand,項目名稱:Infer.Net,代碼行數:52,代碼來源:ProductGaussianBeta.cs

示例3: Run

		public void Run()
		{
			// Number of label classes for this example
			int numLabels = 3;

			// Train the model
			ClickModelMarginals marginals = Model1(numLabels, false);
			if (marginals == null)
				return;

			//-----------------------------------------------------------------------------
			// The prediction model
			//-----------------------------------------------------------------------------

			// The observations will be in the form of an array of distributions
			Variable<int> numberOfObservations = Variable.New<int>().Named("NumObs");
			Range r = new Range(numberOfObservations).Named("N");
			VariableArray<Gaussian> observationDistribs = Variable.Array<Gaussian>(r).Named("Obs");
			// Use the marginals from the trained model
			Variable<double> scoreMean = Variable.Random(marginals.marginalScoreMean).Named("scoreMean");
			Variable<double> scorePrec = Variable.Random(marginals.marginalScorePrec).Named("scorePrec");
			Variable<double> judgePrec = Variable.Random(marginals.marginalJudgePrec).Named("judgePrec");
			Variable<double> clickPrec = Variable.Random(marginals.marginalClickPrec).Named("clickPrec");
			Variable<double>[] thresholds = new Variable<double>[numLabels + 1];

			// Variables for each observation
			VariableArray<double> scores = Variable.Array<double>(r).Named("Scores");
			VariableArray<double> scoresJ = Variable.Array<double>(r).Named("ScoresJ");
			VariableArray<double> scoresC = Variable.Array<double>(r).Named("ScoresC");
			scores[r] = Variable.GaussianFromMeanAndPrecision(scoreMean, scorePrec).ForEach(r);
			scoresJ[r] = Variable.GaussianFromMeanAndPrecision(scores[r], judgePrec);
			scoresC[r] = Variable.GaussianFromMeanAndPrecision(scores[r], clickPrec);
			// Constrain to the click observation
			Variable.ConstrainEqualRandom(scoresC[r], observationDistribs[r]);
			// The threshold variables
			thresholds[0] = Variable.GaussianFromMeanAndVariance(Double.NegativeInfinity, 0.0).Named("thresholds0");
			for (int i = 1; i < thresholds.Length - 1; i++)
				thresholds[i] = Variable.Random(marginals.marginalThresh[i]).Named("thresholds"+i);
			thresholds[thresholds.Length - 1] = Variable.GaussianFromMeanAndVariance(Double.PositiveInfinity, 0.0).Named("thresholds"+(thresholds.Length-1));
			// Boolean label variables
			VariableArray<bool>[] testLabels = new VariableArray<bool>[numLabels];
			for (int j = 0; j < numLabels; j++) {
				testLabels[j] = Variable.Array<bool>(r).Named("TestLabels" + j);
				testLabels[j][r] = Variable.IsBetween(scoresJ[r], thresholds[j], thresholds[j + 1]);
			}

			//--------------------------------------------------------------------
			// Running the prediction model
			//--------------------------------------------------------------------
			int[] clicks = { 10, 100, 1000, 9, 99, 999, 10, 10, 10 };
			int[] exams = { 20, 200, 2000, 10, 100, 1000, 100, 1000, 10000 };
			Gaussian[] obs = new Gaussian[clicks.Length];
			for (int i = 0; i < clicks.Length; i++) {
				int nC = clicks[i];    // Number of clicks 
				int nE = exams[i];     // Number of examinations
				int nNC = nE - nC;     // Number of non-clicks
				Beta b = new Beta(1.0 + nC, 1.0 + nNC);
				double m, v;
				b.GetMeanAndVariance(out m, out v);
				obs[i] = Gaussian.FromMeanAndVariance(m, v);
			}

			numberOfObservations.ObservedValue = obs.Length;
			observationDistribs.ObservedValue = obs;
			InferenceEngine engine = new InferenceEngine();
			Gaussian[] latentScore = engine.Infer<Gaussian[]>(scores);
			Bernoulli[][] predictedLabels = new Bernoulli[numLabels][];
			for (int j = 0; j < numLabels; j++)
				predictedLabels[j] = engine.Infer<Bernoulli[]>(testLabels[j]);

			Console.WriteLine("\n******   Some Predictions  ******\n");
			Console.WriteLine("Clicks\tExams\t\tScore\t\tLabel0\t\tLabel1\t\tLabel2");
			for (int i = 0; i < clicks.Length; i++) {
				Console.WriteLine("{0}\t{1}\t\t{2}\t\t{3}\t\t{4}\t\t{5}",
						clicks[i], exams[i], latentScore[i].GetMean().ToString("F4"),
						predictedLabels[0][i].GetProbTrue().ToString("F4"),
						predictedLabels[1][i].GetProbTrue().ToString("F4"),
						predictedLabels[2][i].GetProbTrue().ToString("F4"));
			}
		}
開發者ID:xornand,項目名稱:Infer.Net,代碼行數:80,代碼來源:ClickModel.cs


注:本文中的Beta.GetMeanAndVariance方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。