當前位置: 首頁>>代碼示例>>C#>>正文


C# Beta.GetMean方法代碼示例

本文整理匯總了C#中Beta.GetMean方法的典型用法代碼示例。如果您正苦於以下問題:C# Beta.GetMean方法的具體用法?C# Beta.GetMean怎麽用?C# Beta.GetMean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在Beta的用法示例。


在下文中一共展示了Beta.GetMean方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的C#代碼示例。

示例1: drawBetaDistribution

		private static void drawBetaDistribution(Rectangle rect, Beta dist)
		{
			GradientStopCollection gsc = new GradientStopCollection();
			int numStops = 21;
			double mean = dist.GetMean();
			double meanDensity = Math.Exp(dist.GetLogProb(mean));
			double inc = 1.0 / (numStops-1);
			double curr = 0.0;
			double maxLogProb = Double.MinValue;
			double minLogProb = -5.0;
			for (int i=0; i < numStops; i++)
			{
				double logProb = dist.GetLogProb(curr);
				if (logProb > maxLogProb) maxLogProb = logProb;
				curr += inc;
			}
			if (maxLogProb <= minLogProb)
				maxLogProb = minLogProb + 1.0;
			double diff = maxLogProb - minLogProb;
			double mult =  1.0 / (maxLogProb - minLogProb);
			curr = 0.0;
			double blueLeft = 0; double blueRight = 0;
			double redLeft = 255; double redRight = 255;
			double greenLeft = 255; double greenRight = 255;

			for (int i=0; i < numStops; i++)
			{
				double red, green, blue;
				double logProb = dist.GetLogProb(curr);
				if (logProb < minLogProb) logProb = minLogProb;
				double level = mult * (logProb - minLogProb);
				red = level * (mean * redRight + (1.0 - mean) * redLeft);
				green = level * (mean * greenRight + (1.0 - mean) * greenLeft);
				blue =level * (mean * blueRight + (1.0 - mean) * blueLeft);
				byte redb = red < 0.0 ? (byte)0 : red > 255.0 ? (byte)255 : (byte)red;
				byte greenb = green < 0.0 ? (byte)0 : green > 255.0 ? (byte)255 : (byte)green;
				byte blueb = blue < 0.0 ? (byte)0 : blue > 255.0 ? (byte)255 : (byte)blue;
				gsc.Add(new GradientStop { Color =new Color() { A = 255, R = redb, G = greenb, B = blueb } , Offset = curr});
    			curr += inc;
			}
			LinearGradientBrush brush = rect.Fill as LinearGradientBrush;
			brush.GradientStops = gsc;
		}
開發者ID:xornand,項目名稱:Infer.Net,代碼行數:43,代碼來源:ClinicalTrial.xaml.cs

示例2: ProbTrueAverageConditional

		/// <summary>
		/// EP message to 'probTrue'
		/// </summary>
		/// <param name="sample">Incoming message from 'sample'. Must be a proper distribution.  If uniform, the result will be uniform.</param>
		/// <param name="probTrue">Incoming message from 'probTrue'.</param>
		/// <returns>The outgoing EP message to the 'probTrue' argument</returns>
		/// <remarks><para>
		/// The outgoing message is a distribution matching the moments of 'probTrue' as the random arguments are varied.
		/// The formula is <c>proj[p(probTrue) sum_(sample) p(sample) factor(sample,probTrue)]/p(probTrue)</c>.
		/// </para></remarks>
		/// <exception cref="ImproperMessageException"><paramref name="sample"/> is not a proper distribution</exception>
		public static Beta ProbTrueAverageConditional([SkipIfUniform] Bernoulli sample, Beta probTrue)
		{
			// this code is similar to DiscreteFromDirichletOp.PAverageConditional()
			if (probTrue.IsPointMass) {
				return Beta.Uniform();
			}
			if (sample.IsPointMass) {
				// shortcut
				return ProbTrueConditional(sample.Point);
			}
			if (!probTrue.IsProper()) throw new ImproperMessageException(probTrue);
			// q(x) is the distribution stored in this.X.
			// q(p) is the distribution stored in this.P.
			// f(x,p) is the factor.
			// Z = sum_x q(x) int_p f(x,p)*q(p) = q(false)*E[1-p] + q(true)*E[p]
			// Ef[p] = 1/Z sum_x q(x) int_p p*f(x,p)*q(p) = 1/Z (q(false)*E[p(1-p)] + q(true)*E[p^2])
			// Ef[p^2] = 1/Z sum_x q(x) int_p p^2*f(x,p)*q(p) = 1/Z (q(false)*E[p^2(1-p)] + q(true)*E[p^3])
			// var_f(p) = Ef[p^2] - Ef[p]^2
			double mo = probTrue.GetMean();
			double m2o = probTrue.GetMeanSquare();
			double pT = sample.GetProbTrue();
			double pF = sample.GetProbFalse();
			double Z = pF * (1 - mo) + pT * mo;
			double m = pF * (mo - m2o) + pT * m2o;
			m = m / Z;
			if (!Beta.AllowImproperSum) {
				if (pT < 0.5) {
					double inc = probTrue.TotalCount * (mo / m - 1);
					return new Beta(1, 1 + inc);
				} else {
					double inc = probTrue.TotalCount * ((1 - mo) / (1 - m) - 1);
					return new Beta(1 + inc, 1);
				}
			} else {
				double m3o = probTrue.GetMeanCube();
				double m2 = pF * (m2o - m3o) + pT * m3o;
				m2 = m2 / Z;
				Beta result = Beta.FromMeanAndVariance(m, m2 - m * m);
				result.SetToRatio(result, probTrue);
				return result;
			}
		}
開發者ID:prgoodwin,項目名稱:HabilisX,代碼行數:53,代碼來源:BernoulliFromBeta.cs

示例3: AddAnalyticComponent

		// Helper function to add the removed parts back (see note)
		private static void AddAnalyticComponent(
				Beta meanQ,
				double ELogS,
				double ES,
				double ESLogS,
				ref double EELogMLogGamma,
				ref double EELogOneMinusMLogGamma)
		{
			double ELogM, ELogOneMinusM;
			meanQ.GetMeanLogs(out ELogM, out ELogOneMinusM);
			double ELogMSquared = ELogM * ELogM
                + MMath.Trigamma(meanQ.TrueCount) - MMath.Trigamma(meanQ.TotalCount);
			EELogMLogGamma -= ELogS * ELogM + ELogMSquared;
			double Em = meanQ.GetMean();
			double am = meanQ.TrueCount;
			double bm = meanQ.FalseCount;
			double EmlogOneMinusM = Em * (MMath.Digamma(bm) - MMath.Digamma(am + bm + 1));
			double EmlogmlogOneMinusM = Em * ((MMath.Digamma(bm) - MMath.Digamma(am + bm + 1)) * (MMath.Digamma(am + 1)
                - MMath.Digamma(am + bm + 1)) - MMath.Trigamma(am + bm + 1));
			double ELogMLogOneMinusM = ELogM * ELogOneMinusM - MMath.Trigamma(meanQ.TotalCount);
			EELogOneMinusMLogGamma += .5 * Math.Log(2 * Math.PI) * ELogOneMinusM - .5 * ELogS * ELogOneMinusM
                - .5 * ELogMLogOneMinusM + EmlogOneMinusM * ESLogS
                + ES * EmlogmlogOneMinusM - ES * EmlogOneMinusM;
		}
開發者ID:xornand,項目名稱:Infer.Net,代碼行數:25,代碼來源:DirichletOp.cs


注:本文中的Beta.GetMean方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。