scipy.stats.dgamma()是一个双伽玛连续随机变量,它使用标准格式和一些形状参数定义以完成其规格。
参数:
q :上下尾概率
x :分位数
loc :[可选]位置参数。默认值= 0
scale :[可选]比例参数。默认值= 1
size :[int型元组,可选]形状或随机变量。
moments :[可选]由字母['mvsk']组成; “ m” =均值,“ v” =方差,“ s” = Fisher的偏度,“ k” = Fisher的峰度。 (默认=“ MV”)。
结果:双伽玛连续随机变量
代码1:创建双Gamma连续随机变量
from scipy.stats import chi
numargs = chi.numargs
[a] = [0.6, ] * numargs
rv = chi(a)
print ("RV : \n", rv)
输出:
RV : <scipy.stats._distn_infrastructure.rv_frozen object at 0x000001FDC8AA3940>
代码2:双伽玛随机变量和概率分布。
import numpy as np
quantile = np.arange (0.01, 1, 0.1)
# Random Variates
R = chi.rvs(a, scale = 2, size = 10)
print ("Random Variates : \n", R)
# PDF
R = chi.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)
输出:
Random Variates : [-1.95099046 -0.92462647 -0.44728222 -1.02853811 0.26525202 0.33532233 -1.74580986 -0.02263675 0.02631306 0.01852519] Probability Distribution : [0.00457609 0.05019958 0.09422768 0.13505809 0.1714982 0.20274293 0.22833692 0.24812679 0.2622088 0.27087564]
代码3:图形表示。
import numpy as np
import matplotlib.pyplot as plt
distribution = np.linspace(0, np.minimum(rv.dist.b, 5))
print("Distribution : \n", distribution)
plot = plt.plot(distribution, rv.pdf(distribution))
输出:
Distribution : Distribution : [0. 0.10204082 0.20408163 0.30612245 0.40816327 0.51020408 0.6122449 0.71428571 0.81632653 0.91836735 1.02040816 1.12244898 1.2244898 1.32653061 1.42857143 1.53061224 1.63265306 1.73469388 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857 3.67346939 3.7755102 3.87755102 3.97959184 4.08163265 4.18367347 4.28571429 4.3877551 4.48979592 4.59183673 4.69387755 4.79591837 4.89795918 5. ]
代码4:改变位置参数
<div class="noIdeBtnDiv">
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 5, 100)
# Varying positional arguments
y1 = chi.pdf(x, 1, 6)
y2 = chi.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")
注:本文由纯净天空筛选整理自 scipy stats.dgamma() | Python。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。