當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


Python Scipy stats.dgamma()用法及代碼示例


scipy.stats.dgamma()是一個雙伽瑪連續隨機變量,它使用標準格式和一些形狀參數定義以完成其規格。

參數:
q :上下尾概率
x :分位數
loc :[可選]位置參數。默認值= 0
scale :[可選]比例參數。默認值= 1
size :[int型元組,可選]形狀或隨機變量。
moments :[可選]由字母['mvsk']組成; “ m” =均值,“ v” =方差,“ s” = Fisher的偏度,“ k” = Fisher的峰度。 (默認=“ MV”)。

結果:雙伽瑪連續隨機變量


代碼1:創建雙Gamma連續隨機變量

from scipy.stats import chi  
  
numargs = chi.numargs 
[a] = [0.6, ] * numargs 
rv = chi(a) 
  
print ("RV : \n", rv) 

輸出:

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x000001FDC8AA3940>

代碼2:雙伽瑪隨機變量和概率分布。

import numpy as np 
quantile = np.arange (0.01, 1, 0.1) 
   
# Random Variates 
R = chi.rvs(a, scale = 2,  size = 10) 
print ("Random Variates : \n", R) 
  
# PDF 
R = chi.pdf(a, quantile, loc = 0, scale = 1) 
print ("\nProbability Distribution : \n", R)

輸出:

Random Variates : 
 [-1.95099046 -0.92462647 -0.44728222 -1.02853811  0.26525202  0.33532233
 -1.74580986 -0.02263675  0.02631306  0.01852519]

Probability Distribution : 
 [0.00457609 0.05019958 0.09422768 0.13505809 0.1714982  0.20274293
 0.22833692 0.24812679 0.2622088  0.27087564]
 

代碼3:圖形表示。

import numpy as np 
import matplotlib.pyplot as plt 
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 5)) 
print("Distribution : \n", distribution) 
  
plot = plt.plot(distribution, rv.pdf(distribution))

輸出:

Distribution : 
Distribution : 
 [0.         0.10204082 0.20408163 0.30612245 0.40816327 0.51020408
 0.6122449  0.71428571 0.81632653 0.91836735 1.02040816 1.12244898
 1.2244898  1.32653061 1.42857143 1.53061224 1.63265306 1.73469388
 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878
 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367
 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857
 3.67346939 3.7755102  3.87755102 3.97959184 4.08163265 4.18367347
 4.28571429 4.3877551  4.48979592 4.59183673 4.69387755 4.79591837
 4.89795918 5.        ]

代碼4:改變位置參數

<div class="noIdeBtnDiv"> 
import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100) 
  
# Varying positional arguments 
y1 = chi.pdf(x, 1, 6) 
y2 = chi.pdf(x, 1, 4) 
plt.plot(x, y1, "*", x, y2, "r--")

注:本文由純淨天空篩選整理自 scipy stats.dgamma() | Python。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。