step_text_normalization()
创建将对字符变量执行 Unicode 规范化的配方步骤的规范。
用法
step_text_normalization(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
normalization_form = "nfc",
skip = FALSE,
id = rand_id("text_normalization")
)
参数
- recipe
-
一个recipe 对象。该步骤将添加到此配方的操作序列中。
- ...
-
一个或多个选择器函数用于选择受该步骤影响的变量。有关更多详细信息,请参阅
recipes::selections()
。 - role
-
由于没有创建新变量,因此此步骤未使用。
- trained
-
指示预处理数量是否已估计的逻辑。
- columns
-
将由
terms
参数(最终)填充的变量名称字符串。在recipes::prep.recipe()
训练该步骤之前,这是NULL
。 - normalization_form
-
确定 Unicode 规范化的单个字符串。必须是 "nfc"、"nfd"、"nfkd"、"nfkc" 或 "nfkc_casefold" 之一。默认为"nfc"。有关更多详细信息,请参阅
stringi::stri_trans_nfc()
。 - skip
-
一个合乎逻辑的。当
recipes::bake.recipe()
烘焙食谱时是否应该跳过此步骤?虽然所有操作都是在recipes::prep.recipe()
运行时烘焙的,但某些操作可能无法对新数据进行(例如处理结果变量)。使用skip = FALSE
时应小心。 - id
-
该步骤特有的字符串,用于标识它。
整理
当您tidy()
此步骤时,会出现一个包含列terms
(选择的选择器或变量)和normalization_form
(规范化类型)的小标题。
也可以看看
step_texthash()
用于特征哈希。
例子
library(recipes)
sample_data <- tibble(text = c("sch\U00f6n", "scho\U0308n"))
rec <- recipe(~., data = sample_data) %>%
step_text_normalization(text)
prepped <- rec %>%
prep()
bake(prepped, new_data = NULL, text) %>%
slice(1:2)
#> # A tibble: 2 × 1
#> text
#> <fct>
#> 1 schön
#> 2 schön
bake(prepped, new_data = NULL) %>%
slice(2) %>%
pull(text)
#> [1] schön
#> Levels: schön
tidy(rec, number = 1)
#> # A tibble: 1 × 3
#> terms normalization_form id
#> <chr> <chr> <chr>
#> 1 text NA text_normalization_j8gw4
tidy(prepped, number = 1)
#> # A tibble: 1 × 3
#> terms normalization_form id
#> <chr> <chr> <chr>
#> 1 text nfc text_normalization_j8gw4
相关用法
- R textrecipes step_textfeature 计算文本特征集
- R textrecipes step_texthash 代币的特征哈希
- R textrecipes step_tokenize_wordpiece 字符变量的Wordpiece标记化
- R textrecipes step_tokenfilter 根据词频过滤标记
- R textrecipes step_tokenize_sentencepiece 字符变量的句子标记化
- R textrecipes step_tokenmerge 将多个令牌变量合并为一个
- R textrecipes step_tf 代币的使用频率
- R textrecipes step_tokenize 字符变量的标记化
- R textrecipes step_tfidf 词频-令牌的逆文档频率
- R textrecipes step_tokenize_bpe 字符变量的 BPE 标记化
- R textrecipes step_lemma 标记变量的词形还原
- R textrecipes step_clean_names 干净的变量名称
- R textrecipes step_word_embeddings 令牌的预训练词嵌入
- R textrecipes step_stem 令牌变量的词干
- R textrecipes step_ngram 从标记变量生成 n-gram
- R textrecipes step_stopwords 过滤标记变量的停用词
- R textrecipes step_pos_filter 令牌变量的语音过滤部分
- R textrecipes step_untokenize 令牌变量的取消令牌化
- R textrecipes step_lda 计算代币的LDA维度估计
- R textrecipes step_clean_levels 清晰的分类级别
- R textrecipes step_sequence_onehot 令牌的位置 One-Hot 编码
- R textrecipes step_dummy_hash 通过特征哈希的指示变量
- R textrecipes show_tokens 显示配方的令牌输出
- R textrecipes tokenlist 创建令牌对象
- R update_PACKAGES 更新现有的 PACKAGES 文件
注:本文由纯净天空筛选整理自等大神的英文原创作品 Normalization of Character Variables。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。