马修斯相关系数
用法
mcc(data, ...)
# S3 method for data.frame
mcc(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
mcc_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
参数
- data
-
包含
truth
和estimate
参数指定的列的data.frame
,或者table
/matrix
,其中真正的类结果应位于表的列中。 - ...
-
目前未使用。
- truth
-
真实类结果的列标识符(即
factor
)。这应该是一个不带引号的列名,尽管此参数是通过表达式传递的并且支持quasiquotation(您可以不带引号的列名)。对于_vec()
函数,一个factor
向量。 - estimate
-
预测类结果的列标识符(也是
factor
)。与truth
一样,可以通过不同的方式指定,但主要方法是使用不带引号的变量名称。对于_vec()
函数,一个factor
向量。 - na_rm
-
logical
值,指示在计算继续之前是否应剥离NA
值。 - case_weights
-
案例权重的可选列标识符。这应该是一个不带引号的列名称,其计算结果为
data
中的数字列。对于_vec()
函数,一个数值向量。
值
tibble
包含列 .metric
、 .estimator
和 .estimate
以及 1 行值。
对于分组 DataFrame ,返回的行数将与组数相同。
对于 mcc_vec()
,单个 numeric
值(或 NA
)。
相关级别
在计算二元分类指标时,对于哪个因子级别应自动被视为 "event" 或 "positive" 结果,没有通用约定。在 yardstick
中,默认使用第一级。要更改此设置,请将参数 event_level
更改为 "second"
以将因子的最后一个级别视为感兴趣级别。对于涉及 one-vs-all 比较(例如宏平均)的多类扩展,此选项将被忽略,并且 "one" 级别始终是相关结果。
例子
library(dplyr)
data("two_class_example")
data("hpc_cv")
# Two class
mcc(two_class_example, truth, predicted)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 mcc binary 0.677
# Multiclass
# mcc() has a natural multiclass extension
hpc_cv %>%
filter(Resample == "Fold01") %>%
mcc(obs, pred)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 mcc multiclass 0.542
# Groups are respected
hpc_cv %>%
group_by(Resample) %>%
mcc(obs, pred)
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 mcc multiclass 0.542
#> 2 Fold02 mcc multiclass 0.521
#> 3 Fold03 mcc multiclass 0.602
#> 4 Fold04 mcc multiclass 0.519
#> 5 Fold05 mcc multiclass 0.520
#> 6 Fold06 mcc multiclass 0.494
#> 7 Fold07 mcc multiclass 0.461
#> 8 Fold08 mcc multiclass 0.538
#> 9 Fold09 mcc multiclass 0.459
#> 10 Fold10 mcc multiclass 0.498
相关用法
- R yardstick mn_log_loss 多项数据的平均对数损失
- R yardstick mae 平均绝对误差
- R yardstick msd 平均符号偏差
- R yardstick mpe 平均百分比误差
- R yardstick metrics 估计性能的通用函数
- R yardstick metric_set 组合度量函数
- R yardstick mape 平均绝对百分比误差
- R yardstick metric_tweak 调整度量函数
- R yardstick mase 平均绝对比例误差
- R yardstick pr_auc 查准率曲线下面积
- R yardstick accuracy 准确性
- R yardstick gain_capture 增益捕获
- R yardstick pr_curve 精确率召回曲线
- R yardstick conf_mat 分类数据的混淆矩阵
- R yardstick rpd 性能与偏差之比
- R yardstick detection_prevalence 检测率
- R yardstick bal_accuracy 平衡的精度
- R yardstick rpiq 绩效与四分位间的比率
- R yardstick roc_aunp 使用先验类别分布,每个类别相对于其他类别的 ROC 曲线下面积
- R yardstick roc_curve 接收者算子曲线
- R yardstick rsq R 平方
- R yardstick iic 相关性理想指数
- R yardstick recall 记起
- R yardstick roc_aunu 使用均匀类别分布,每个类别相对于其他类别的 ROC 曲线下面积
- R yardstick npv 阴性预测值
注:本文由纯净天空筛选整理自Max Kuhn等大神的英文原创作品 Matthews correlation coefficient。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。