蒙特卡洛交叉验证的一次重采样采用原始数据集的随机样本(无替换)用于分析。所有其他数据点都添加到评估集中。
参数
- data
-
一个 DataFrame 。
- prop
-
为建模/分析而保留的数据比例。
- times
-
重复采样的次数。
- strata
-
data
中的变量(单个字符或名称)用于进行分层抽样。如果不是NULL
,则每次重新采样都会在分层变量中创建。数字strata
被分为四分位数。 - breaks
-
给出对数值分层变量进行分层所需的箱数的单个数字。
- pool
-
用于确定特定组是否太小的数据比例,是否应合并到另一个组中。我们不建议将此参数降低到默认值 0.1 以下,因为分层组太小存在危险。
- ...
-
这些点用于将来的扩展,并且必须为空。
细节
使用 strata
参数,在分层变量内进行随机抽样。这有助于确保重采样与原始数据集具有相同的比例。对于分类变量,采样是在每个类别内单独进行的。对于数字分层变量,strata
被分为四分位数,然后用于分层。低于总数10%的地层合并在一起;有关更多详细信息,请参阅make_strata()
。
例子
mc_cv(mtcars, times = 2)
#> # Monte Carlo cross-validation (0.75/0.25) with 2 resamples
#> # A tibble: 2 × 2
#> splits id
#> <list> <chr>
#> 1 <split [24/8]> Resample1
#> 2 <split [24/8]> Resample2
mc_cv(mtcars, prop = .5, times = 2)
#> # Monte Carlo cross-validation (0.5/0.5) with 2 resamples
#> # A tibble: 2 × 2
#> splits id
#> <list> <chr>
#> 1 <split [16/16]> Resample1
#> 2 <split [16/16]> Resample2
library(purrr)
data(wa_churn, package = "modeldata")
set.seed(13)
resample1 <- mc_cv(wa_churn, times = 3, prop = .5)
map_dbl(
resample1$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
}
)
#> [1] 0.2709458 0.2621414 0.2632775
set.seed(13)
resample2 <- mc_cv(wa_churn, strata = churn, times = 3, prop = .5)
map_dbl(
resample2$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
}
)
#> [1] 0.2652655 0.2652655 0.2652655
set.seed(13)
resample3 <- mc_cv(wa_churn, strata = tenure, breaks = 6, times = 3, prop = .5)
map_dbl(
resample3$splits,
function(x) {
dat <- as.data.frame(x)$churn
mean(dat == "Yes")
}
)
#> [1] 0.2636364 0.2599432 0.2576705
相关用法
- R rsample manual_rset 手动重采样
- R rsample make_splits 分割对象的构造函数
- R rsample make_strata 创建或修改分层变量
- R rsample validation_set 创建验证拆分以进行调整
- R rsample initial_split 简单的训练/测试集分割
- R rsample populate 添加评估指标
- R rsample int_pctl 自举置信区间
- R rsample vfold_cv V 折交叉验证
- R rsample rset_reconstruct 使用新的 rset 子类扩展 rsample
- R rsample group_mc_cv 小组蒙特卡罗交叉验证
- R rsample group_vfold_cv V 组交叉验证
- R rsample rolling_origin 滚动原点预测重采样
- R rsample reverse_splits 反转分析和评估集
- R rsample group_bootstraps 团体自举
- R rsample labels.rset 从 rset 对象中查找标签
- R rsample get_fingerprint 获取重采样的标识符
- R rsample bootstraps 引导抽样
- R rsample validation_split 创建验证集
- R rsample reg_intervals 具有线性参数模型的置信区间的便捷函数
- R rsample clustering_cv 集群交叉验证
- R rsample initial_validation_split 创建初始训练/验证/测试拆分
- R rsample get_rsplit 从 rset 中检索单个 rsplit 对象
- R rsample loo_cv 留一交叉验证
- R rsample complement 确定评估样本
- R rsample slide-resampling 基于时间的重采样
注:本文由纯净天空筛选整理自Hannah Frick等大神的英文原创作品 Monte Carlo Cross-Validation。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。