TensorFlow是Google设计的开源Python库,用于开发机器学习模型和深度学习神经网络。
reset()用于清除磁带存储的所有信息。
用法:reset()
参数:它不接受任何参数。
返回:它不返回任何内容。
范例1:
Python3
# Importing the library
import tensorflow as tf
x = tf.constant(4.0)
# Using GradientTape
with tf.GradientTape() as gfg:
gfg.watch(x)
y = x * x * x
y+=x*x
# Computing gradient without reset
res = gfg.gradient(y, x)
# Printing result
print("res(y = x*x*x + x*x):",res)
# Using GradientTape
with tf.GradientTape() as gfg:
gfg.watch(x)
y = x * x * x
# Resetting the Tape
gfg.reset()
gfg.watch(x)
y+=x*x
# Computing gradient with reset
res = gfg.gradient(y, x)
# Printing result
print("res(y = x*x):",res)
输出:
res(y = x*x*x + x*x): tf.Tensor(56.0, shape=(), dtype=float32) res(y = x*x): tf.Tensor(8.0, shape=(), dtype=float32)
范例2:
Python3
# Importing the library
import tensorflow as tf
x = tf.constant(3.0)
# Using GradientTape
with tf.GradientTape() as gfg:
gfg.watch(x)
y = x * x
y+=x*x
# Computing gradient without reset
res = gfg.gradient(y, x)
# Printing result
print("res(y = x*x + x*x):",res)
# Using GradientTape
with tf.GradientTape() as gfg:
gfg.watch(x)
y = x * x
# Resetting the Tape
gfg.reset()
gfg.watch(x)
y+=x
# Computing gradient with reset
res = gfg.gradient(y, x)
# Printing result
print("res(y = x):",res)
输出:
res(y = x*x + x*x): tf.Tensor(12.0, shape=(), dtype=float32) res(y = x): tf.Tensor(1.0, shape=(), dtype=float32)
相关用法
注:本文由纯净天空筛选整理自aman neekhara大神的英文原创作品 Python – tensorflow.GradientTape.reset()。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。